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LIST OF SYMBOLS 

A species density 

ĉ  species concentration 

D heat of dissociation 

e internal energy 

e° heat of formation 

h enthalpy 

Hj. stagnation enthalpy 

j dimension index (see Equation 4) 

k metric coefficients for arc length in curvilinear system 

( i )  
' dissociation rate coefficient 

K̂  recombination rate coefficient 
r 

Kg equilibrium constant 

L characteristic "body length 

p pressure 

q velocity 

q maximum free stream adiabatic velocity 

r distance measured perpendicular to the axis of symmetry 

R gas constant 

R̂  body radius of curvature 

s general curvilinear co-ordinate 

T temperature 

U free stream velocity 
00 

u velocity component along the body 

v velocity component normal to the body 
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x distance measured along the body surface from the axis of 
symmetry 

y distance measured normal to the body surface from the surface 

a degree of dissociation 

P %(2)/ g(l) 

7 specific heat ratio 

r see Equation 21 

Ô shock layer thickness 

g shock wave density ratio 

6 body surface angle 

-9 body polar angle 

X nonequilibrium parameter 

(j. molecular weight 

T3 chemical reaction coefficients 

p density 

a ' shock wave angle 

(j) body meridian angle 

see Figure 3 

CD. chemical source function 
l 

[\ see Equation 73 

• see Equation 73 

7̂ see Equation 73 

Q) see Equation 73 

Subscripts 

A refers to atomic species 

b on the body surface 
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r rotational quantity 

s at the shock wave 

t translational quantity 

v vibrational quantity 

o stagnation point 
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INTRODUCTION 

The "blunt nosed re-entry vehicles used in present day "ballistic 

weapon systems and space capsules return to the earth's atmosphere at 

extremely high velocities. A large portion of the kinetic energy 

associated with these high velocities is converted to thermal energy 

"by the strong "bow shock preceeding the vehicle. The resulting high 

temperature of the shock layer may cause excitation of the normally 

inert degrees of freedom of the gas including vibration, dissociation 

and ionization. The excitation of the internal degrees of freedom 

gives rise to real gas effects "because the vibration, dissociation and 

ionization are not in equilibrium with the local temperature. The 

équilibration of these degrees of freedom generally takes a large 

number of molecular collisions which introduces a finite relaxation 

time. This relaxation time must be compared with some characteristic 

flow time to determine the magnitude of the departure from thermodynamic 

equilibrium. If this departure is sufficiently large, rate equations 

which describe the nonequilibrium effects must be included in the 

mathematical description of the gaseous media through which the body is 

flying. This-paper deals with a technique for solving the hypersonic 

blunt body problem including nonequilibrium effects due to molecular 

dissociation. 

The hypersonic blunt body problem is usually posed as the inverse 

or the direct problem. In the former, the shape of the bow shock is given 

•and one is required to construct the generating body and the corresponding 

flow field. The direct problem specifies the body shape and the shock 
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wave shape and flow field are to be determined. Several techniques have 

been used to obtain solutions to the direct and inverse problems. These 

are summarized in reference 13 and only a short discussion of the more 

important methods will be given here. 

Specifying the shock shape .in the inverse problem equivalently 

determines the variation of the flow properties and their normal dériva* 

tives along the shock surface. The Rarikine-Hugoniot equations are used 

to determine the'flow properties and the equations of motion specified 

to the shock provide the required derivatives. These known quantities 

are then used to initiate a step wise integration from the shock to the 

initially unknown body. Garabedian and Lieberstein (9) have used this 

approach for a perfect gas while Lick (lj) has extended this to a 

bimolecular dissociating gas. Hall, Eschenroeder and Marrone (ll) have -

used the inverse method with a complicated gas model including dissocia

tion, vibration and ionization with the associated coupling effects to 

predict body shape and flow field characteristics corresponding to a 

given shock. The practical value of the inverse method must be questioned 

because one does not know the exact shock shape produced by a given body. 

This means that a large number of solutions for various shock shapes 

must be obtained for each operating'altitude encountered. Even when a 

large number of solutions have been obtained, the solution for flow field 

and body shape are not generally the exactly desired results. 

A much more practical method would be the direct solution as outlined 

previously. Many techniques, both exact and approximate have been used on 

the direct hypersonic blunt body problem. The only direct method that 

is considered exact is the stream tube continuity method in which the 



www.manaraa.com

3 

stream tubes in the shock layer are traced out "by satisfying the con

servation equations. The convergence properties of this approach have 

"been questioned and as a result more effort is"being expended on different 

techniques. The best known approximate methods are the Newtonian, 

constant density and thin shock theory solutions. The Newtonian theory 

assumes that the shock layer is very thin and has the same slope as the 

body. The normal component of momentum is then assumed to be lost 

inelastically and is transmitted to the body through the shock layer. 

The constant density and thin shock layer theories are of less importance 

but both use assumptions implied by their names. Unfortunately these 

methods give only order of magnitude results over the entire spectrum of 

altitudes and velocities of interest. The method of integral relations as 

introduced by Dorodnitsyn (6) and applied by Belotserkovskii (2) provides 

results that are as accurate as desired for any velocity and altitude. 

The only limit to the accuracy of this method is the effort in the 

formulation of higher-order approximations and digital computer time. 

The technique used to solve the direct hypersonic blunt body problem 

in this paper is the method of integral relations. The first-order 

approximation for a dissociating gas using this technique has been formu

lated independently by both the author and Shih et al. (21) at the 

supersonic research laboratory at MIT. A second-order approximation 

using a one strip shock with a reacting gas is formulated in the following 

chapters. The formulation is made for a general axisymmetric or two-

dimensional body with a general dissociating gas. Specification is then 

made to a sphere and a Lighthill gas (l8) to demonstrate the technique. 
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THE GENERAL INTEGRAL RELATIONS METHOD FOR A REACTING GAS 

General Remarks 

The method of integral relations is based on a paper by Dorodnitsyn 

(6) in which he proposed a general technique for solving non-linear fluid 

mechanics problems. This technique has been applied to the hypersonic 

blunt body problem using a perfect gas and considerable effort is being 

expended to modify the approach for a real gas. 

The equations of fluid dynamics are usually in a form which is not 

suited to the integral technique. Dorodnitsyn's method requires that 

this system of partial differential equations describing the fluid 

behavior be cast into a divergence form,., This form is obtained by 

combining the equations of motion in a particular manner. Consider the 

following divergence form: 

(x, yj u1,..., un)+ (x,y; ,uj = L̂ (x,y; û ,...,uj 

i=l,..., n (l) 

where P̂ , Ĝ  and L̂  are known functions of their arguments and û  are 

unknown functions of the independent variables x,y. For simplicity, 

consider the domain to be rectangular in shape and let it be determined 

by O ̂  x ̂  constant and 0 ̂  y < 1. This may represent the shock layer 

of a blunt re-entry body after undergoing a suitable transformation of 

co-ordinates. This domain is divided into N strips by drawing lines 

ŷ  = 1 - (Figure l) and the divergence Equation 1 is integrated 

from y=0 to y=ŷ ., the boundary of each strip. 

CGi)k + S f7t Pi ̂  = f\ay + (Gl)y=0 (2) 

V o *o 
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Each strip in the domain provides one integral relation. If 

there are n equations in the system, we have nU total relations of the 

form of Equation 2. 

It is assumed that the integrands and P̂  may he expressed 

as polynomials of the form: 

The 's depend linearly on the values of the functions on the 

strip "boundaries as implied in Equation 3. The use of the polynomial 

expansion permits the evaluation of the remaining integrals in Equation 2. 

This integration provides a system of nit ordinary differential equations 

in the dependent variables on the strip "boundaries. These ordinary-

differential equations are then integrated from x=0 to x= constant to 

obtain solutions for û . 

The equations of motion of a compressible fluid flowing about an 

arbitrary two-dimensional or axisymmetric body are derived in the 

following pages. The analysis is simplified by using the following 

assumptions: 

1) The gas is non-viscous and non-heat conducting. 

2) Diffusion is neglected. 

3) The gas is a mixture of thermally perfect gases. 

4) The translational, rotational and vibrational degrees of freedom 

are those pertaining to thermal equilibrium. 

5) Ionization and radiation are neglected. 

J=o 
( 3 )  

Specific Formulation for the Blunt Body Problem 
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Gibson (10) has shown that the major effect of diffusion is to 

make the assumption of frozen flow through the shock with respect to 

dissociation invalid and also to smooth or decrease the concentration 

gradients immediately behind the shock. This post shock concentration 

effect is most pronounced on electron and nitric oxide densities. Since 

this paper is concerned with a simple diatomic gas in which the electronic 

degrees of freedom are considered frozen, the diffusion effect is neglected. 

Assumption 4 may "be questioned in the light of recent developments 

(4). The inclusion of vibrational relaxation and the associated coupling 

between vibration and dissociation would only complicate the problem since 

the main purpose of this paper is to demonstrate the feasibility of 

applying the second order, one-strip shock integral method to a dissociat

ing gas. Since the gas model is strictly dissociating and the electronic 

degrees of freedom are neglected, there could of course be no radiation. 

The body under consideration in this paper may be either two 

dimensional 'or axisymmetric so long as the body surface is continuous 

and has a continuous first derivative. The coordinate system for such 

a body is shown in Figure 2. The origin is taken at the stagnation point 

while the x coordinate is distance along the body and the y axis is 

everywhere normal to the body. Arc length in this system is given by: 

kg dSg = dy W 

where k̂ , kg and k̂  are the necessary metric coefficients for arc length 
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due to the curvilinear nature of the coordinate system. These coefficients 

are on the order of unity for most practical bodies. The radius of 

curvature of the body is denoted by R̂ , r is the distance measured 

normal to the axis of symmetry and $ is a unit distance normal to the 

x,y plane in two-dimensional (j = 0) or the meridian angle in axisymmetric 

flow (j = 1). 

The continuity equation in this system is: 

d(puk^) 3(pvk]ly) 

SZ—*—5T- " 0 (5) 

where p is the density, u is the velocity along the body and v is the 

velocity normal to the body. 

The two components of Euler's equation are: 

+ = (6) 

u dv dv u2 ̂ 1 1 dp 
 ̂̂  -5F = - F 3y 

where p is the fluid pressure. 

The energy equation is 

(7) 

(8) 

2 
2~ = Htj = constant (9) 

Since the total energy remains constant along à streamline in steady 

adiabatic flow (l6), this equation may also be -written: 

h. + 

where the enthalpy is defined as : 

h = e + p/p (10) 

and the internal energy is given by: 

e = 4̂  (ei " e°) • 
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Here ĝ  is the mass of the ith species per unit mass of gas mixture, ê  

is specific internal energy of the ith species and e° is the heat of 

formation of the ith species per unit mass. The summation is over all 

components of the gas. The internal energy for the ith species may "be 

•written: 

e = e + e + e (12) 
1 1t xr v 

where the translational, rotational and vibrational energies are given 

by: 

e. = 3/2 R.T 
xt 1 

e. = (13) 

= i  - s i - r - i v  
v exp gr - 1 

where R̂  is the gas constant for the ith species, T is the temperature, 

h is Planck's constant, k is Boltzmann's constant and xd is the vibrational 

frequency of the diatomic molecules. The energies given in Equation 13. 

have been written explicitly for a diatomic gas and are derived from 

statistical mechanics (8). 

Dalton's law is assumed to hold and the equation of state for a 

mixture of perfect gases may be written as: 

P = Z ~ pRT M 
i **i 

where ̂  is the molecular weight of the ith species, p is pressure, R 

is the universal gas constant and p is the density of the mixture. 

If the gas is dissociating, the reaction equations describing this 

phenomenon and the rate equation for each species must be written. ' Then 

the equation describing a one step chemical reaction can be "written (20): 
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Z *>' A =5=̂  Z v" A. (15) 
3=1 J J Kr j=l J J 

where the •o.'s are stoichiometric coefficients of the reactants and 
J 

products and the summation is over all species entering the reaction. 

The K*s are the dissociation and recombination rate coefficients. 

The result of the chemical reaction 15 is to produce a net change in 

concentration of each constituent of the gas. The rate- or species contin

uity equation governing this change in concentration is: , 

^ 1 , . (16) 
Sn 0 

where c. is the mass of species i per unit.mass of mixture and co. is the 

net production of the ith species. The $/̂  denotes the usual substan

tial derivative. By means of Equation 15, ax may be written (20) : 

TT ^ TT "°i" • 
œi = " uPKd + ̂ î i " uï̂ Kr ' °  ̂

This equation must be summed over all chemical reactions which give rise 

to a net change in the given species. If there are four independent 

chemical reactions then the net production of each reaction must be 

accounted for in ox. 

The equations of motion must be cast into the divergence form of 

Equation 1 by combining them in a suitable manner. The continuity 

Equation 5 is already in proper form for the integral method. Multiplying 

Equation 7 by and Equation 5 hy v and adding, the following diver

gence form is obtained: 

p, *N ôk_ 
^ [k-jk^p + pv2)]+ ^ [k5p.uv]= ly (p + P.u2) -"Zy • (l8) 
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A similar technique applied to Equation 6 yields : 

à A dk_ 
^ l>5(P + pu-2)] + ^ [k^puv] + k^P.uv^r- - P 3— = ° (19) 

and the rate equation for the ith species: 

[puk̂ ci] + [p.vk̂ k̂ ĉ ] = pk̂ ax . (20) 

The governing equations can now he non-dimensionalized using the 

following substitutions: 

u v p p % = — v = r- ' p = — ? = — 
°°M °°M °°t °°t 

* = e .y - { î = ï B "1 

£ - i i r  ( 2 1 )  
t '00 

where q = y 2H, and the subscript « refers to free stream stagnation 
°°M 

values and L is a characteristic body length. 

Equation 5 and Equations 18 to 20 in non-dimensional form are: 

[pj pû] + 1= [(1 + îjr ) r3 pv] = 0 (22) 

4=- [(1+ ̂ -)r̂ (rp + pv̂ )+ X=- [r̂ puv]- [rp + pu2 ] - j (l+ %—) Tp cos 6 = 0 

 ̂ %b  ̂ R, 

(23) 

[rj(rp + pu2)]+ ||;[(1+ ̂ -)rjpuv]+ rJ &£L _ j p[-~ -ysin0 ||] = 0 

b̂ "̂ b 

(24) 

^ i pS \i+ L [5T (1 + Î - )  ?3c1]. ; (1 + z_) ïJ»t . (25) 

. b̂ 
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The general integral method now requires that each of the above 

equations "be integrated from y = 0 to the "boundary of each strip. 

Belotserkovskii has used this technique with "both a two and three strip , 

shock layer (2). His analysis was "based on a perfect gas but the trend 

indicated in the solutions should be applicable to the case of other gas 

models. The results he obtained indicate that the two or three strip 

shock layer is necessary at low Mach numbersj while at the velocities of 

interest here, the one, two and three strip shock layers give practically 

the same results. This paper is based on a one strip model so the diver

gence form of the equations of motion are now integrated from the body 

to the shock. 

The partially integrated forms of Equations 22 to 25 become: 

(26) 

o 

puvdy + [1+ ̂ -][r̂  (rpg + pQ ?;)]- r̂  T p̂ - ̂ pgu,v jp a v p 
s s s s dx 

o 

(27) 

o 

ô 

o 

Ô Ô 

o o 
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f pur̂ c dy = f p (l + £-) m dy . (29) 
dx J 1 V R ' X 

*b 
o 

The development presented thus far is usually referred to as the 

first-order approximation. For this first-order approximation a set of 

total differential equations, -which must be satisfied along the body, is 

obtained in terms of the conditions prevailing at the shock. These shock 

conditions enter the describing differential equations with the exception 

of the x-momentum and rate equations. The shock conditions do not appear 

in these equations because their exact forms are known along the body 

surface and the integration indicated in Equations 28 and 29 is not 

required. The proper forms to use on the body are: 

G, = - r fÊk (30) 
 ̂dx dx ' ' 

 ̂ dc. 

^ 5T " \ • C51) 

The first-order approximation derives its name from the fact that a 

one strip shock layer is used. The order of the one strip shock approxi

mation can be increased only be retaining more terms in the interpolation 

polynomials. In so far as the author knows, up to this time only a 

linear representation of the integrand functions has been used with the 

method of integral relations regardless of the number of divisions in the 

shock layer. When the first two terms are used to represent the function 

across the shock layer, the coefficients depend linearly on the values of 

the function on the strip boundaries. For a one strip, linear case, the 
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first integrand of Equation 26 would read: 

---4-^* [pJ 5S;S . (32) 

A second-order polynomial is used in the present study to approximate 

the integrand functions across the shock layer. For the second-order 

approach the same, integrand reads: 

- ;&v [2̂ s  ̂ 5 (5̂ u) y f 

+ [5 (^p). - (ïî 5.V ̂  SbVl T • to) 

The coefficients of this expansion depend on "both the values of the 

functions and their derivatives at the shock. These first derivatives 

must he obtained from the equations of motion. 

The expanded form of the continuity Equation 5 applied at the shock 

wave reads: 

where 

t\ - -t̂ ]s - ̂  "(1+ e + fi]- j ̂  - S sin e m 3 
dx R, \ s 

(55) 

Equation 6 becomes 

Ps ttw- |)vs-û3 §[§V 1 r [g].- - ̂  - 5sîs[|ls-r[|]s (*> 

Equation 7 reads 

ps Ki+ I-) Vûs |h|]s • r tu |-h|,b = - (|u 07) 
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The energy Equation 8 may he written: 

b :  l i , + [ ! v  r  t  [ Â r  ( S s + y l s l = 0  -  ( 5 8 )  

where the derivatives of the enthalpy can "be explicitly written in terms 

of the other unknowns and their derivatives when the gas model is specified. 

The concentration derivatives at the shock are provided "by the rate 

Equation l6 assuming the flow is frozen with respect to dissociation 

through the shock. This is a reasonable assumption since the shock wave • 

thickness is very small compared to the dissociational relaxation length. 

Under this assumption the concentration derivatives are: 

B=. Si t1 + 
1 S (39) 

à y -  5 s ( ( W y v i i s  g ]  

Equations 55 through 58 constitute a set of simultaneous algebraic 

ôû • 
equations in the derivatives —, —, — and evaluated at the 

By By By By 
shock. The coefficients of Equation 55 may now he found and the inter

polation polynomials are formulated. 

The final equation necessary for solution of the problem is the 

following geometric relation: 

— = [1 -t—-] tan (cr - 0) . (40) 

aî \ 

This relation is derived from the geometry of the shock layer. 

The boundary conditions must be specified to complete the problem 

description. On the body surface 

v̂  = 0 Ĉ -l) 



www.manaraa.com

15 

which insures that there is no mass flow across the "body surface or, 

equivalently, that the "body surface is a streamline. 

The "boundary conditions at the shock take the form of a set of 

equations in v , pg, pg and Tg. The gas is frozen with respect to 

dissociation through the shock as previously stated. It is assumed that 

the gas is in vibrational equilibrium immediately after passing through 

the shock. This leads to the solution of a set of simultaneous equations 

for the shock variables by means of an iterative scheme since the shock 

temperature T„ cannot be determined explicitly because of the form of the 

vibration term in the energy equation. The equations to be solved are: 

p Û sin a = p q cos >]/ (42) 
^co co S S 

Û cos a = q sin \lr (43) 
oo s 

6 ^ o = Pg+ P„ 5% cos= t (44) 
1 CO CO 

\ + 2̂  = \ + g? (45) 

where the subscripts oo and s refer to free stream and post shock conditions 

and \[r is the angle of the post shock velocity with the shock normal. 

Figure 3 shows the geometry of the shock waves. 

Equations 9, 14, 26, 27, 30, 31 and 40 are the equations which must 

be solved for the unknowns a, 5, p̂ , p̂ , and T̂ . For convenience 
b 

the following list presents a summary of variables and their interdependence. 

Unknown dependent variables 

ô(x), c(x), ̂ (x), p̂ (x), p̂ (x), % T̂ (x) 

Given quantities 

Pc.' P*'  ̂
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êy(x), 5̂ (5), ̂ (x) 

Parameters whose functional dependence is known 

ùs (a), vg(cr), pg(c), ps(cj) 

from Equations 42 to 45. 

Boundary conditions 

u^(o) = 0 cr(o) = — g(o) = ô 

where ô is an assumed value of shock stand-off distance which is 
o 

initially unknown in the analysis. 

The matching condition used to obtain the proper value of ô . takes 

the form of a singularity in Equation 22 . This equation may be expanded • 

into the following form: 

a r iïLît +i 
d: 
— + B = 0 ' (46) 
dx L d In 

where A and B are continuous functions of the dependent and independent 

variables. The x-momentum equation may be written for points on the body 

surface : 

4 - ^  M l  
dx p dx 

and 
dp, d In p, 

d In û  = - T — . (48) 
2 

a In = -2 

 ̂"b 

Therefore 

h, =  ̂

aln r [— ] 
apT) 

substituting this in Equation 46 
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A 1 - + B = 0 (50) 

dp. 
b 

The singularity used by Dorodnitsyn and Belotserkovskii is apparent in 

Equation 50. When u, = T —— , —rr becomes infinite unless B also 
D dp̂  ox 

vanishes. The simultaneous vanishing of both coefficients of Equation 50 

insures that the derivative is finite. This condition is met by varying 

the shock stand-off distance 5n. 

point. For equilibrium and frozen flows this corresponds to the equili

brium and frozen sound speeds since the flow is isentropic along the body 

surface. In non-equilibrium flow the thermodynamic processes are non-

isentropic and the singular point on the body can no.longer be taken as 

the sonic point. 

One of the disadvantages of the one strip shock layer approach is 

that all details of the internal flow field are lost. A technique giving 

streamlines and other flow properties has been formulated recently in 

reference 21. The N strip approach, using linear interpolation poly

nomials, provides as much detail as is required on the strip boundaries by 

increasing N which provides a smaller grid size. 

Several problems arise when the higher-order strip theories are _. -

used. The one strip method is a simple two point boundary value problem 

in -which the initially unknown parameter is determined by the regularity 

condition on the velocity derivative at the sonic point on the body surface. 

If two or more strips are used, the problem is complicated by the occurence 

The point at which = T is usually referred to as the sonic 
dPb 
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of singularities in the velocity derivatives along the strip "boundaries 

as well as on the "body. This again is a type of two point problem "but 

the initially unknown parameter at the strip interface is the velocity 

on the stagnation streamline. If a two strip shock is assumed, the 

initial velocity midway "between the shock and the "body on the stagnation 

streamline must "be assumed as well as the initial shock stand off distance. 

The one strip shock layer with a second-order interpolation poly

nomial requires the matching condition on the body surface only while 

providing better accuracy than the true first-order approach. This 

technique is applied to a sphere in the following chapter. 
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THE SECOND-ORDER INTEGRAL METHOD APPLIED TO A 

SPHERE using A OWE STRIP SHOCK 

The simplest geometric configuration that can he used to demonstrate 

the practicality of the developments of the previous chapter is a sphere. 

Hence, in the illustrative example worked out in this paper is a spherical 

body surface is assumed. The fore portion of many re-entry vehicles are 

nearly spherical so the results of the example should be of practical 

interest. 

The coordinate system used is the same as that outlined previously 

•with the exception that the origin is now at the center of the body and 

the x coordinate along the body is replaced by the polar angle $ as 

shown in Figure 4. Conversion from the system of Chapter II to the 

spherical system can be made by noting that : 

d6 d5 1 
dx dx R^ 

d  I d .  
dx ~ Rb avfl 

rt, = »b sln"s (51) 

5T = cos^ 
y * = y + \ 

L = Rb • 

The non-dimensional distance x is the same as and note that derivatives 

with respect to y' are the same as with respect to y since R^ is constant. 

The body radius of curvature R^ is taken to be one foot for simplicity. 

The integral equations necessary for this example are Equations 26 
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and 27. In the coordinate system of Figure 3 they "become: 

6 
35 J - [îspbîb] h + [i + s][?spsïbl = 0 (52) 

o 

b 

f-j J îpSîaJ +[i+S][r^rps + 5S?)]- - ?bpsvb % 

o 

' 5 

[r (Tp + pu2) + T (l + y) cos 0 p] dy = 0 (53) 

o 

The specific integrands which must he approximated "by polynomials are: 

55û, [15 + f, (1 + y) § . (54) 

Each of the first three of these functions can he approximated by means 

of the coefficients of the polynomial expansion as determined by the 

known conditions on the body and the shock and the first derivative on 

the shock. The coefficients of the expansion (l + y)p are obtained by 

using the conditions on the body and the shock along with the first 

derivative condition on the body. The reason for using the normal 

derivative at the body is that it can be found readily from Euler's 

Equation 7. On the body 

(55) 
3y r 

This is a much simpler expression than the normal derivative at the 

shock. 

If the necessary integrations indicated in Equation 52 and 55 are 
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carried out, the following forms are obtained: 

\ ̂S[2(l+ô)3sûssin-5 + p^sin £ - | (~\lj "(l+5)sin<9 || 

(56) 
+ (l+5)2 psvs sin-v) = 0 

\ h{B  s l n f l  ^ Ç.j} + s 

- 5. v. S - LsfA ̂  5.S.V 4^ 
dy 

sin S dô r4+3ô - - - 5(l+ô) /dpuvN -, 5 sin J? (*H-3S) â t~ \ 
" -t~ 75 ~2 we" - 2 5 2 w(ws' 

+ ̂  d+f) % (̂ )s - 0 (57) 
5 sin-̂  7tj-oŝ  m p̂uv, 

dy 

The derivatives with respect to y in Equations $6 and 57 must be 

evaluated from the general equations of motion specified to the shock. 

The derivatives of the shock variables with respect to can be obtained 

from the solutions to the oblique shock equations. These expressions 

will be derived later. 

The continuity Equation 56 must now be expanded and combined with 

the -d -momentum Equation 1+7 to explicitly exhibit the looping or singular 

condition on the body surface. If Equations 56 and 47 are combined, 

the following form results: 
-e 

p^S sin-9 [1 - —10 = - Sp^u^cos -d - 3(l+ô)2 pgvs sin -ô 

d̂ b 

-2(l4-6)5pgU^cos-9 - 25(l+5)sin-J ^ J - sin^^g [p^u^-(l+5)p 

dub 

n dô rr - u 

s s 

+2ÔP u ]+ô || [£ (1+8) sin ,9 pù] +^_d [â, (l+S) sin-5 pu ] 

s s ci-y s a.v d-
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The entire right hand side of this equation must vanish when the condition: 

(59) 
dpb 

is satisfied. This condition is fulfilled when the proper shock stand

off distance is used. 

The gas model to he used must he chosen "before any of the y deriva

tives in the preceeding equations can "be evaluated. For simplicity the 

gas is taken as a simple diatomic gas following Lighthill (l8). In the 

Lighthill model it is assumed that the energy stored in the vibrational 

degrees of freedom is one half of the fully excited classical value. This 

simplifies the analysis in that the vibrational energy is now a linear 

function of the temperature rather than a complicated expression similar 

to Equation 15. The vibrational energy is then taken to be: 

rpt 

ê -i-
(60) 

The enthalpy of the gas is 

.h = (4+a) RgT + CCD . (6l) 

The energy equation for a Lighthill gas may be written: 

= h + = (Ua) RpT + a D- + - . (62) 

Equation 62 is non-dimensionalized by using the substitutions given in 

Equation 21 to obtain: 

| = (kz)T + a D + . (6?) 

Since the gas model considered is a pure diatomic gas, only two chemical 

reactions are needed: 

kC1) 
2̂ 
+ A 2A + A 

k 
r 
(1) 
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kp 
d ̂  

+ ap •"* ̂  j 2a + ag (64) 

"̂r 

where A^ denotes the molecular species. Both chemical reactions contri

bute to the source function given in Equation 17. 

Let a be the mass fraction of the atomic species. The species 

continuity or rate equation may be written 

H Sa So; = (l) pa(l-a) _ ^(l) pfaP K(2) p(i-a)2 _ /2) p2a?(i 

37 d  ̂ ' 4 a ^ h 

(65) 

where the superscript (l) refers to the first reaction and (2) to the 

second. The forward and reverse reaction coefficients are denoted by 

K^' and and the molecular weight of the atomic species is given by 

This rate equation is now specialized to the present example by 

applying it along the body surface. 

,,(1) „,(i) e§°£ . jalfv1-0̂ 2 (2) 
"b ST = Ka Pb 2S — + a - r —1 

"a >> ^A 

(66) 

A more meaningful form for nonequilibrium may be obtained by non-

dimensionalizing and introducing a nonequilibrium parameter. Let 

^ ' 

r* .2 „ ,(d 

M , > 
Kr 

k 

v* 
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2k 

â 

2V 
\ = kg (1-a) - pop (67) 

using these substitutions the rate equation reads 

= 5b 12% + p (1-a,) ] . (68) 

The parameter X is a measure of the magnitude of the departure of the 

gas from thermodynamic equilibrium.- For equilibrium flow X is identically 

zero while for nonequilibrium conditions X takes on a non-zero value which 

depends on how far the gas is out of equilibrium. 

The rate and energy equations for the assumed gas model have been 

derived and the y derivatives of the dependent variables at the shock 

wave surface must now be obtained. The equations of motion are specified 

to the shock in the following form: 

Continuity 

(l+5)ps (~)s - Ps as y s + [(1+S)vs~Us d^[d-]s tx S > (69) 

x-momentum 

P s 
invillê.- r & [si = q (70) s s d s ^ s  ^ — " 8  

y momentum 

p ̂  ps [(i+ô)vs-us [-7]s + r (1+0) [•—]s - V s .> (î1) 

and energy 

Â: ^ Ps #s - ur 5S [pl. - ®s tP) 
dy . dy oy ôy 

where 
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h . . -  -  [ | f ] s - 2 P Â - . S B S s  U t 

eris'- W. " r " P="s [§|]S 

V  .  - -  P s 5 b [ | ] b  

($ s = ê| [?r ̂  -D][^]s 

pg &y 

fc, = p % gr1] h 

âys (i+b)ïs-ûs|| 

Equations 69 through 72 are used to evaluate the y derivatives of u, v, 

p and p at the shock. The solutions are given in Appendix A. Angular 

derivatives of these y forms are also required and are given in Appendix A. 

The angular derivatives of the shock variables are required to 

obtain solutions for the normal derivatives in the above system. The 

shock variables and their derivatives are provided by solution of the 

Rankine-Hugoniot equations. The equations that must be satisfied across 

the shock are 

poo ̂ 00 sinff = ps % cos ̂  (7̂ ) 

0^ cos a = qg sin \|/ (75) 

r + Pro 
sin2 cr = T pg + ps q| cos2 x|r (76) 

Û2 q2 

7/2 Tro + ̂  = (4+a) Ts + a D + — . (77) 

The solutions to this system are given in Appendix B as functions of the 

shock angle a which is one of the unknowns in the problem. 
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The formulation of the one strip shock case is completed by the 

equation of state: 

P = (1+a) pT (78) 

where T = T/T^ and the geometric equation 

= - (l+B) cot (c +9 ) . (79) 

The following list presents a summary of the dependent variables and 

refers to the equation providing a solution for each. 

unknown dependent variable obtained from equation 

S 01 

a 02 

pb 50 

% 68 

% 
*b 73 

S 79 

boundary conditions 

~~cr(o) = rt/2 u^(o) = 0 S(o) = 6 

The equations referred to in Appendix C are the final forms of the 

continuity and y-momentum equations. The y-momentum equation is 

second-order in .a and provides a solution for cr. The continuity 

equation as previously discussed provides a solution for u^„ 

The. general procedure followed in obtaining the required solution 

is to assume an initial value of the shock stand-off distance ôQ. 

Using this value of 6 , the equations of motion are integrated from 

the shock to the body along the axis of symmetry. This provides the 
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initial values of the dependent variables at the stagnation point. The 

governing differential equations are then integrated along the body 

starting from the axis of symmetry. This integration proceeds until 

Equation 59 is satisfied or the right hand side of Equation 58 vanishes. 

If both of these conditions are not satisfied simultaneously, a new value 

of 5' is chosen and the procedure is repeated until.continuity of the 

velocity derivative on the body surface is guaranteed. 
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numerical programs am) results 

The analytical formulation of the nonequilibrium blunt body problem 

of Chapter III must be put in suitable form for, numerical computation. 

The complexity of the problem dictates that the numerical computations 

be divided into two sections. First, the fluid properties along the 

axis of symmetry must be known to initiate the integration required in 

the problem and second, solutions of the differential equations which 

provide body conditions and shock shape must be obtained. 

The Stagnation Streamline 

The proper values of the fluid properties at the stagnation point 

on the body surface must be known for a given shock stand-off distance 

before a complete solution of the problem can be realized. These values 

must be obtained by solving a set of simultaneous differential and 

algebraic equations along the stagnation streamline. On the -9=0 

streamline, the velocity component along the body surface vanishes. This 

condition applied to Equations 65, 7 and 63 leads to Equations 80, 8l and 

83. Equations 82 and 84 are just the regular polynomial for pressure 

and the equation of state. Partial derivatives with respect to y are 

replaced by totals along the axis of symmetry since the dependent variables 

are only functions of y. The required equations are the rate equation: 

- -(1)-

ÈË. = P _r [2a + p (l - a) ] , (80) 
dy v 

Euler's equation 

éï = _ éë (81) 
dy pv dy 



www.manaraa.com

29 

pressure polynomial 

1 £-+ a? £-)= + . (l)3] , 
R R  ̂ S 

(82) p = 

1 + y 
o o o 

energy equation 

P y (83) 

equation of state 

(84) 
(i+a)p 

The continuity equation applied on the stagnation streamline is 

not used in this system hut is replaced by the pressure polynomial. The 

polynomial expansion is used everywhere in the shock layer due to the 

approximation of the pressure integrand of Equation 53 and therefore, 

it was decided to apply it to the axis of symmetry. The technique used 

by Shih et al.(21) differed from the method presented here in that the 

limiting form of the continuity equation "was used in place of Equation 82. 

When the continuity equation is. used, a polynomial expansion of the pu 

ôû 
product is required to obtain an expression for the — which appears. 

This leads to a somewhat more complicated system of equations. Thus the 

pressure polynomial expansion is used instead. 

The accuracy of the solution to the main problem depends directly 

on the accuracy of the solution to the stagnation streamline problem. 

Since an approximate expression is used for the pressure, it is imperative 

that the approximation be as good as possible. For this reason, the pres

sure expression is written as a cubic which is a higher order approximation 

b5 
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than that used for rupu in Equation 33. • One more boundary condition is 

required to obtain the next term and this condition is obtained from 

Euler's equation which requires that the normal derivative of the 

pressure at the body vanish since v vanishes. The boundary conditions 

are: 

_ = p 
y=0 ° y=6^ 

f » ' ° 'S'h, • • "» 

To satisfy the boundary conditions, the coefficients become: 

% - 5b ai - so »b 

5p) 
S 

ag = (3+2 &j(5g -  ̂(1+6j (̂ ) 
dy 

a = ÔQ (1+S0K~^)s - (2+ÔQ)(PS - . (86) 
dy 

The technique used to solve Equations 80 to 84, with the a^'s 

given by 85 and 86, is based on assuming an initial shock stand-off 

distance S and body pressure p^. The differential equations are then 

integrated from the shock to the body. The assumed body pressure is 

corrected after each pass until the velocity vanishes when y = 0. A 

close examination of the method indicates that the solution of the 

stagnation streamline problem depends heavily on the characteristics of 

the assumed polynomial expansion for the pressure across the shock 

layer. The pressure increases continuously from the shock to the body 

and available information (21, 17) indicates that the pressure curve 

is concave downward at all points on the axis of symmetry. Since the 

pressure curve is concave downward everywhere, the second derivative 
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must "be negative everywhere. If the second derivative is obtained from 

Equation 82 it takes the form: 

=  +  (L,  .S  , .  (87) 
af 1+y S| s0 dy 

Elis function must be negative at both the shock and body. At the 

body 

[s] = _1 < o (88) 
d?y=0 6^ 

and therefore 

(3+28̂ ) - ft,) - §0 < o . (89) 
dy 

This equation provides a lover bound on the values of p^ that may be 

used as an initial assumption in attempting to solve the required 

systems of equations. In particular: 

5 (1+5 ) 
^7^ [5ls • (90) 

The same condition applied at the shock yields: 

[S] . _2_ [!â + ÏS - (âË) ] < o (91) 
I? ?=Bo l+go 6= 5= dy y = S0 

or 

eu + 3eu - 5̂  <0 . (92) 
2 o ay 

Substituting from Equation 86 the following form results: 

(2+8 ) 8 

îb < 5. - TT • (95) 

3 + 6o dy 

Equations 90 and 93 provide upper and lover bounds on possible body 

pressures that may be assumed to obtain a solution on the axis of 
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symmetry and yet satisfy the second derivative condition. It is 

interesting to note that the allowable range of may be controlled 

by proper combinations of 6 and (^) . 
° dy S 

Table 1 lists the flight conditions and various physical constants 

used to compute a stagnation streamline solution for oxygen under the 

special conditions indicated. The free stream conditions and the gas 

model dictate the values of the post shock variables and their derivatives. 

For the Lighthill model, the normal derivative of p on the stagnation 

streamline at the shock is large for nonequilibrium flow. This is due to 

the assumption of frozen flow with respect to dissociation through the 

shock and the accompanying steep concentration gradients immediately 

following the shock. Since [—1 is fixed, the bound on p, is now controlled o , - s b 
ay 

by the assumed value of Ô . For values of S which are known to be 
o o 

approximately correct (21), the allowed range of p^ is too small to allow 

a solution along the axis of symmetry. For these free stream conditions, 

a new model for the pressure expansion must be obtained. It is required 

that the representation satisfy the same four boundary conditions of 

Equation 85 and that the second derivative condition also be met. 

Since the allowed range of body pressures is too restrictive to allow 

a solution along the stagnation streamline when a third-order polynomial 

is used, an elliptic approximation was used. The elliptic form was 

chosen because of its geometric simplicity and the fact that all required 

boundary conditions of Equation 85 can be satisfied. Temperature, density, 

pressure and degree of dissociation profiles are given in Figures 5, 6, 7 

and 8 for both equilibrium and nonequilibrium flows. These solutions were 
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obtained through an inverse process in which the integration proceeds 

from the shock to the body. A shock stand-off distance Bq and a body 

pressure are initially assumed in the analysis, and the body pressure is 

adjusted after each pass until the velocity vanishes when y = 0. Note 

that the only alteration required in Equations 80 to 84 to obtain the 

equilibrium solution is that the rate Equation 80 is replaced by the 

equilibrium condition X = 0. 

In both the equilibrium and nonequilibrium solutions the elliptic 

pressure form was used. It is apparent that the elliptic approximation 

is not satisfactory if Figure 6 is carefully examined. The equilibrium 

solution is really an isentropic compression of the gas from the shock 

to the body whereas the nonequilibrium solution gives rise to an entropy 

increase in the compression because of the finite reaction rates. One 

of the major results of an entropy increase in an adiabatic flow is the 

resulting loss of stagnation pressure. Since both flows are required to 

be in equilibrium at the stagnation point, the equilibrium stagnation 

pressure must be higher than the nonequilibrium pressure and the tempera

tures also follow the same trend. Figures 5 and 6 indicate the opposite 

effect is true. This is an unfortunate consequence of the, elliptic 

approximation and more directly of the domination of nonequilibrium 

pressure expansion by the first derivative of the pressure at the shock. 

Ah interesting method for determining the stagnation point pro

perties in nonequilibrium flow may be derived if one knows the normal 

derivative of v at the stagnation point. If the rate Equation 80 is 

differentiated with respect to y and applied to the stagnation point, 

the following is obtained : 
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[~)0T~10 - [5 41>L0
[2A+ E (L-A) Y4)0 (94) 

dy dy u dy 

where 

X = Kg (1-a) - p cP (95) 

and 

l|lo - 1 W- ' + h + 4# ̂ 0^0 • 
dy P dy 

(96) 

Substituting Equation 9& into 94: 

teo + 4L) [2a + ^-a} T -I + + 2<*1 } [T?]o 
^ ay J o dy 

+ [pK̂ 1)]0[2a +p (l-a) ][oP - %2â. T ŷ §]0 = 0 . (97) 
P dy 

Equation 97 is a homogeneous algebraic equation in the two derivatives 
t~l0 and (%]q. 
dy dy 

The energy equation may be written in the form: 

i = r + - (sa) 
P 

Differentiating with respect to y and applying the result to the stagna

tion point : 

[ D -3 _ L [%L - rr I, I, = O • (99) 
p (im)2 0 aj° 1+a p2 0 ay 0 

Equations 97 and 99 constitute a pair of homogeneous algebraic equations 

in the derivatives [—1 and [—1 . If a non-trivial solution to this 
af ° ay ° 

system exists, the determinant of the coefficients must vanish. This 

condition yields: 
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[ § &  { t f v  + P ( l - a ) ] t ^ 2  +  

+ [SkW] [2a + p (l-a)] [0? + 1^21 T ^LtB - ^— ] = 0. (loo) 
r o o p ùi o p(i+a)2 o 

All conditions at the stagnation point now can be determined providing 

[—] is known. The unknowns are p, p, a and T and the governing 
: dy 0 • 
algebraic system is comprised of the equilibrium condition X = 0, the 

energy Equation 9&, the equation of state 84 and the constraint given 

by Equation 100. The derivative [—] is determined from the assumed 
dy ° 

pressure expansion across the shock layer by using Euler's equation. 

Differentiating 8l and applying the result to the stagnation point: 

= - [- t- i: . (loi) 
dy p dy^ 

A computer program for solving.the algebraic system described above 

was written using both the polynomial and elliptic pressure expansion to 

determine [—] . The program was written by assuming an initial tempera-
dy ° _ 

ture and then calculating p, • p and a from Equations 95> $8 and 84. These 

values of p, p, a and T were then substituted into Equation 100 to see if 

the assumed T was in fact a zero. A corrected value of T was then used 

and through successive passes, a solution was obtained. 

The zero's of Equation 100 depend on the value of [~~]Q which in turn 

d2- ay 
depends on [—-] . The second derivative of the pressure also depends on 

dp ° 
the body pressure due to the approximate representation in the shock 

layer. For both pressure expansions, the digital computer program would 

iterate until values of body temperature and pressure were low enough 

that the second derivative of p would change signs. Reference to Equations 
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88 and 89 indicate this possibility for the polynomial while this 

behavior in the elliptic case means that the pressure expansion has 

jumped from the upper half .which gives the true expansion to the lower 

half of the pressure ellipse. This is equivalent to reducing the body 

pressure to a value somewhat less than the shock pressure. This 

possibility for the elliptic pressure curve is presented because the 

body pressure is computed independent of position on the ellipse. The . . 

first derivative has a fixed sign and when the body pressure assumes a 

value less than the shock pressure, the approximation moves from the first 

to the third quadrant. This causes the change in sign of the second 

derivative. 

The maximum value of the second derivative of the pressure on the 

body would be zero since the stagnation pressure is the maximum value in 

the shock layer. A solution setting the second derivative equal to zero 

was obtained but is not included here. The solution is independent of 

the shock layer pressure variation under these conditions. The values 

of the stagnation point variables obtained by integrating the nonequilibrium 

differential equations and by the second or algebraic scheme do not agree 

as is expected. The algebraic technique does show promise in that the 

results of the two solutions are the same order of magnitude at the 

stagnation point. At present, the integration method would necessarily 

be used to determine the stagnation point thermodynamic variables, 

because the algebraic method is not in a usable form since more research 

on the pressure second derivative is required. 

Main Program 

The numerical aspects of the differential system giving the required 
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solution to the hypersonic "blunt "body problem were not fully investigated 

since the problem was terminated with the stagnation streamline. The 

basic idea used in solving the differential equations as set down previously 

in Chapter III is to assume a shock stand-off distance ô , integrate 

along the stagnation streamline to obtain starting conditions at the 

stagnation point and then integrate along the body surface until the 

matching condition (Equation 59) is satisfied or until the numerator 

or denominator associated with the matching condition in the continuity 

equation vanishes. A new value of ô is assumed and the above process 

is repeated until continuity of the velocity derivative is guaranteed. 

The details and numerical problems associated with this technique are 

discussed in reference 14. 

The method used to obtain solutions for the first-order approximation 

in reference 21 is a modification of the formal iteration procedure given 

above. Solutions of the differential equations along the body are 

obtained for upper and lower bounds on1shock stand-off distance 5 . 

A logarithmic search procedure is initiated using the stored upper and 

lower bound solutions. This technique eliminates the necessity of solving 

the stagnation streamline portion and a good part of the body surface 

part of the problem. The results obtained seem to indicate success in 

using the technique. For further information reference 14 provides a 

more complete discussion, of the details. 

Examination of either the continuity Equation CI or the y-momentum 

Equation C2 reveals the occurence of removable singularities on the axis 

of symmetry. These singularities prevent the initial derivatives in the 

numerical integration program from being obtained directly from the 
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differential equations, A limiting form for the necessary derivatives at 

the stagnation point was obtained by assuming [^j]Q = -1. This is a 

reasonable assumption since the shock and fore portion of a blunt body 

have nearly the same shape in the vicinity of the axis of symmetry. 

Using this assumption and taking the limiting form of Equations 01 and 02: 

râîîl = 1+ 
1 r£i_i . ^1"eo^ _ (1+S0)(SG +3}ps 

a»2 0 0 2r% (pB-pJ 25= (pB-p„) 

. (1+so)3(8risp̂ cl.eo)+eo0j1+go)cdo)] 
2r (ps-pj 5o 5o 

p, 
+ — (3+46 + US2) (102) 

[§$]„ - -1 (103) 

_ <0. 5o0„ (M0) 3B052m (l-€0)_ 

° 2̂  [tr5s-3p„«oat 1 %% fWs-35„€0Hj] 

+ [vX(i-%)+ r(ès-V(^)0- ̂  À (§U>1 

- — + | <lH'S°i 1 • (104) 
% ° • So 

Notice that the second derivative of a is required since the governing 

differential equation is second-order.Because of the symmetry of the pro

blem, the shock angle a and the velocity along the body surface u^ 

are the only dependent variables that possess non-zero first derivatives 

at the stagnation point. The initial derivatives given above along with 

the stagnation values of the dependent variables are sufficient to 

provide the starting conditions for the integration of the governing 

differential equation. 
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RECOMMENDATIONS FOR FURTHER STUDY 

The next step in continuing this problem must "be more work on the 

stagnation streamline. The discussion of the results shown in Figure 6 

clearly indicates that a new technique is needed for determining conditions 

along the axis of symmetry. A solution using a linear approximation for 

the pressure should "be computed and this should "be compared against "both 

the elliptic solution and the results of reference 21. 

The difficulty encountered with the axis of symmetry is the large 

value of the pressure derivative at the shock. A different or more 

realistic gas model may reduce this pressure derivative to a value which 

would allow the general polynomial expansion for pressure to "be used. 

If diffusion effects are included using the present gas model, the same 

result may "be obtained although current literature would not support this 

as the diffusion effect would "be small. A considerable amount of effort 

could be expended on determining the properties along the stagnation 

streamline and at the stagnation point. Much remains to be done in this 

area for real gases. 

The main program for determining shock shape and body flow parameter 

variation must be programmed and results obtained. This is a rather 

difficult problem as is evidenced by the complicated forms given in the 

appendix. The debugging of the main program may take a full year or even 

longer. The results obtained from the solution to the blunt body problem 

must be compared with those of reference 21. A comparison to determine 

which method is actually better is impossible at present since only 

the first-order linear solution has been completed. To draw any 
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meaningful conclusions, a comparison must "be made with "both the linear 

one strip and two strip shock solutions. 

The discovery of an algebraic method for determining the stagnation 

point properties may be the most significant result of this investigation. 

This technique as described in the previous chapter requires that the 

normal derivative of the velocity at the stagnation point be known. This 

normal derivative was obtained using the approximate pressure expansions 

used in the solution of the stagnation streamline problem. This method 

proved to be unsatisfactory as previously discussed. 

An exact solution for the stagnation point properties using the 

algebraic method necessarily requires that a solution of the general 

equations of motion for the velocity derivative be obtained. Solving 

the equations of motion for the normal derivative of the velocity at the 

stagnation point is a difficult problem because some of the governing 

differential equations contain no useful information when they are 

applied along the body surface. The x-momentum equation is an example of 

this behavior. 

If an exact solution for the normal derivative of the velocity at the 

stagnation point cannot be obtained, another technique may be of value. 

The pressure variation in the shock layer and along the body surface is 

only slightly affected by the nonequilibrium state of the flow (15, 21). 

Since the required derivative of velocity depends directly on the second 

derivative of the pressure at the stagnation point, consideration should 

be given to the idea of solving for the normal derivative of the velocity 

using perfect gas. This assumes that the pressure curves are of the 

same shape in both the nonequilibrium and perfect gas cases. Any 
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result obtained using this technique should be of value. 

All computer programs used in this investigation are on file in the 

Aerospace Engineering Department and should be consulted for any 

information concerning numerical techniques or required programs. 
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Table 1. Atmospheric and thermodynamic data 

Free Stream Coefficients 
Conditions (19) for Oxygen (ll) 

106884 
Altitude = 150,000 ft. Kp, = 755103 e T 

T 
P. = 2.725 PSf _(1) 
" ' = i309h 
U = 15,000 ft/sec r 

; . 480.7 °R fW - ̂  

d = «,715412 
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Figure 2. Co-ordinate system 
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Figure 3. Shock wave geometry 
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Figure 4. Spherical tody 
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Figure 5. Stagnation streamline temperature profile 
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Figure 6. Stagnation streamline pressure variation 
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Figure 7- Oxygen concentration along the stagnation streamline 



www.manaraa.com

51 

ro 

GO 

UJ 
Q  

fquilibriuîv! 

nonequilibriuivi 
0.8 

0.8 0.2 0.6 0.4 

normalized distance, (yt) 

Figure 8. Density profile 



www.manaraa.com

52 

appendix a 

Normal Derivatives of the Dependent Variables 

and Angular Derivatives Evaluated at the Shock 

The system of equations that must "be solved for the normal deriva

tives at the shock are given as Equations 69-72. They are repeated here 

for convenience. 

(1+b)pr [73]r - ps s [~7]s + Ul+B)vs-ug §§]ĉ §]s - tX 
oy dy 

g 8 

dy dy 

Ps [(1+B) vs-us ||][|r] g + r(l+G) [|?]s = V s 
oy ay 

PÏ % + 6 s - ^ ̂  [|is + t|iB - ®s 

(Al) 

(A2) 

(a3) 

(A4) 

where the right hand sides are defined in Equation 73. Let A represent 

the determinant of the coefficients, and 

- d§ 
's ds c - (1+8) ÏB - 5„ dS (A5) 

then: 

A -

(14-5) p. 
- dS 

-P 

ps 0 

?s\ 

s d-0 

ps C 

P2s -s 

0 

0 

-Ur PC 

0 

r as 
™r d5 

r(i+5) 

4r 5 

or 

' A = p% r= {^sr [(1+s)2 + (||)2] - 5i °s = (A6) 
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Solutions for the normal derivatives at the shock are then: 

ïgls " ̂  («) [ti"5B g - pB5s=] 

+ | iV I^a(|)2- 0(1,5,0 + iyB rps (i+S)== (A?) 

[^s = - VJS° % - £ r5s°E B+ £ rPs B[4r(l+g)5s+Ps
7
s
c] 

+ rPs [̂ (l+s)2 Ps - c Ps (4c - (1+6) vs)] (A8) 

-B'e = ̂  Sr {(1+S> f-':
s H+ lw> -+ -s ©a} 

- ^ [a| (**= " V " (I+5)2 y 

p: = ("s B + '(1+5) 4 .  - Ç ? .  

- ^ PÎ = t(M)2 + (SE1 C*9> 

[|]B - S p| = [Ur (MS) 5. + ps Ï. =1 - &«?, o [tifsS- P. \ =1 

- F P| =3 - ?. =2 

Thg continuity equation and y-momentum equations require angular 

derivatives of the normal derivatives of pu and puv at the shock. The 

normal derivative of pu may be -written 

[|Œ]s =&r(i+S)?s [4r(i+B)is - 35s (i+s) ? + 5Bû|(i+g)+ «BvB B] 

oy A 

*1 ̂ [WB || + p.?, || + 45bÛsÏb (l+S) -35sq f§] (1+S) 

- R= [^S6 * 2 5 b Û b = ]  

- Tp2 c(l+5) [u (1+6) + v d5/d*9 ] (All) 
A s s s 

< 
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Let 

F = kj> r [(l+ô)2 + (dô/d5)2] -3Be2 (A12) 

then 

a = ̂  rcf 

The normal derivative of pu may "be written: 

#s =S#±iI ̂  (M)îs-î5s(W) ^ + Ï? (1+5) + kiûie ] 
oy 

+ jt. (l+s) [urjs g+ 5.îj f|+ 45svs(i+5) §] 

- f-'t̂ ss* 35s ̂  cl 

- p*-(1+0) tug (l+ô) + vs ^|] (A13) 

Let 

A = (14-5) [ k r  (1+5) ps - 3ps (1+6) v2 + Pgû2 (1+5) + 4psûsvs g] 

D = ( l + 5 )  4 ^ ( 1 + 5 )  

E = (1+6) [ûs(l+ô) + vs §|] 

Then 

rÈEHl =Q$à + _ c _ c<PjE (Al4) 
L
d- s cF cF cF cF K 1 

and 

h - h •A ss*V. B #. =KS - .B s$- - - » 
oy 

- (V +®sE> %] - ("-5) 

where de r /•, ,s;\ dVs dô _^sq do - dS - d2S 
^ =[(!+&) IT " d5dT] d^"1" Vs dV" Us ̂  
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sd 

sd s~ Q sd 

%  i 1 " * *  

s 

r££_z + £l !é + llfl + ££ _i +1£ î!l 1 sm+ltl . _6le. 
X. 1 sdp 1 sa 1 =dp T SP T 1 ® =P s® - s 

(I)" " ^ 

v d + i d ^  - •  

l ÎL^ . ]  sd_ = ^p 

Sdp " Snp ~ ^ SO° " Srip Sdp5 SÂP Sn p ~ 3 ̂  p 
t F a 2 *  F S 2 1  £ S § - [ s i +  F i  - i f 2  ̂  F - ]  • < > - -

£ÎZ J - £2 W-r£l sn + Ù2 sd +Vdi£l -r£f2 + £l]Vd- = -£E-
sd3p sdp " " > - snp Bnp sn„p % " " °Op 

[±E V + fl *d„fl - sn1+[/! - tljVd -
dp np Ap Asp np Ap 

hr:S+ i^(s+T)i <s+I)B +Ssî(^)+ S ( § + I )  + @ i r " a #  
Ap — Lip — . — o — 

[_22 + §2- Yd + yd]̂ 2 2(g+t)i, + (g+i) 
dp np Ap ^ 

if ^ Yg^- f ̂  ^ Y^ s# + " + 
2p . dp ùp ĵ p "f - g+t 

[k " Y? + (s+t) +%§ ̂  

. <0 Y? ^ ^ ^ B 

\(s+T) Y^ + 
rip 

ç f c + ç -  ç  f  + S  

S" ~ + ®rïp S"S"+ % S-S-Sp ^ + Y- + V-Ç ™S5J1T^g§ (§+"0+ q§ ~Y " vl 

S =°£" +*f =sd.g -[£! + (9+T)]||jSa8 = 62 

& 
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(1+5) (1 dffy _ cqb(o(a) dô 
d5 Sin (o+j) 

df sin2 ( œtj ) 

Similarly: 

y-^-h - [ ( | > = + ( ^ .  3 3 t - ^ -

where .d_[dv] = [ôv] fl OF + 1_ de + 1_ ̂ s]+ H.1+&)ps dfc>s 

+ î _[(1+g)pB |̂ ,+(l+ô)c ̂ -J + Ps c ||] 

pgcf 

- 3  ^  ̂  ^  ^  ^  
+ t*s. b -pâ=][q4 +(i+5) 15'] + ûfilç 15. 

pgcf pgf 

^ m ^ W ' - S ^  +  Û  

- ̂  &Ô2 + a r i s - = ( 4 -ps £ + - « §  +  P SÛS g 

- dus dô , - dps dô \, 
+  p

s d 7 d ^ + u s d 7 « ^  

.. The indicated derivatives of the shock variables are presented in 

Appendix B. 
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APPENDIX B 

Method of Obtaining Post Shock Conditions 

As Functions of the Shock Angle 

The conditions which must be satisfied across the shock wave have 

been given in Chapter III and are repeated here for convenience. 

p 0 sin a = p q cos j (Bl) 
^oo oo S S 

Ù cos o" = q, sin tl/ (B2) co s x ' 

^oo + Poo K sin2°" = rPs + Pg9.g COS2 Al; (B5) 

p Û p q2 

7/2 2 - 2 
p= 

Let 

P* Ps 

G = P«/Ps 

Then 

eO^ sin a = qg cos \|r (B5) 

Û cos a = q sin \l/ (B6) 
oo. s 

EPoo + Poo'0! Sin2ff = rPs + % COs2 * (B7) 
P Ù2 q2 

7/2 P — + ~2 = — + ̂ rg Pg/Pg (̂ 8) 
poo 

The normal deflection angle \|r can be eliminated from B7 by squaring 

Equation B5 and combining: 

Fp + p Û2 sin2 a = Fp + P G Û2 sin2 a (B9) 
00 00 00 S 00 00 

or 
p Û2 sin2 a 

ps - p„ + -=-? a-s) (bio) 

From B5 and B6: 
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ÙJ cos2 a + e2 IP sin2 a = q| (Bll) 

Substituting this expression for q.2 into B8 and solving for pg, one 

obtains : 

 ̂p̂  sin2 a sin2 a 

PS 
= H5i + ""Sri e —WT (B12) 

If bio and b12 are set equal, a quadratic in the density ratio is 

generated : 
o rp p r n 

« *  - f 5  +  »+ zV-r + H (=13) 
p ïFsin 0 p tPsin a 0̂0 oo 0̂0 00 

and 

6 = + 1 1  -  f c ; 1 ) 2  -  ^ ( B 1 U )  
00 00 CO 00 CO 00 

The density ratio is known and the shock pressure can be obtained from 

Equation bio. The temperature is obtained from the equation of state and 

the velocity components parallel and perpendicular to the local shock 

surface are obtained from Equations b5 and b6. 

The normal and tangential components of velocity at the shock must 

be resolved into components along and normal to the local body surface. 

Figure 3 demonstrates the geometry of this problem. 

The velocity immediately behind the shock can be obtained from B5 

and b6 as: 

q = 0 [e2 sin2o" + cos2a]2 (B15) 
s oo 

From the geometry of Figure 3 it may be shown that 

û = qg sin cos ( 0  + •$ -90) + qg cos x|r sin (a + V -90) (Bl6) 

vg = qg cos i(f cos ( 0  +  £ -90) - qg sin ^ sin ( 0  + J -gO) (Bl?) 

Equations B5 and B6 are again used to eliminate i|r to obtain the final 

forms : 
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U = 0 cos a sin (cr +J ) - G Ù sin a cos (a +-3) (Bl8) 

vg = etï^ sin a sin (a +V ) + Û* cos a cos (a +^5) (B19) 

The angular derivatives of the shock variables are required in 

some of the equations of motion. Notice that the shock variables are 

functions of the local shock angle cr and derivatives with respect to 

are written : 

dp dp , 

3 3 - ï t &  

where p has been used as an example. The appropriate derivatives are: 
s 

rir * B1- sin "sin(o +tîBin ° cos(»1-•"-£ 

cos cr cos (a + •$ ) (B22) 

dv 
-t-| = -u (l + 4t)+ Û sin a sin ( 0+ J ) + Ù e cos a sin (a4- / i?)  
dv sv d-5 co d-V x 00 dv 

-Ù sin cr cos (a + -9) (B23) 
00 a-v 

= _ â.d6 
d"9 g dJ 

 ̂ ,8 
de = rp^ cos a (^ e-1) 

1 rp 
p ti2sin3a[77 (— +1)-G] 

00 00 7 - yE„,„2 

ï5- 1 n & <«*> 

p u sin 0 
00 CO 

dp 
s 

- (Î. - ÏJ n t2 <"*» - 6 Hi ^ d J s 00' d 1) 1-e da 

d^"t7 - a ^ - b ( S ) 2 + ® t S  ( B 2 6 )  
d us dvs d2cr , / do\2 , m 
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a = -v + Û sin a sin (a +$) + eÛ cos acos (a+J) + Û ~ sin acos (a+-5) 
oo oo x oo da 

Td = u + Û —- sine cos (a +1? ) + Û sin a cos (a + i?)-etj cos a sinfa +-JM 
C m . - .  x  '  m  v / r t n  •  '  s * a* 2 

- Û ~ sin cr sin (a + ) + 2 ̂  cos p cos ( a +  , 9  )  oo da 

dv 
e = s , . + gO cos a sin (a + v> )-Û sin a cos (a+ J)+Û  ̂sin a sin ( a+-£) a v oo x ' co x oo da 

d2v 

d<$ f = - S + e S + f  ̂ > 2 + " d 0  

rde 

dv 
(B27) 

e = ~ug + sin a sin (a+i? )+e cos a sin (o+-5 )- sin a cos (a +5 ) ] 

f = -vs+ Û̂ t—- sinasin(a+ -S)+ ̂  sin a cos(a+ -9)+e cos a cos (a+ -*?) 
da2 

+ sin a sin (a + 9 ) + 2 cos a sin (a + $)] 

du _ 
- Tj-y + sin a cos (a + S ) + e cos a cos (a + j))+ sin a sin(a+-$) ] 

d ps r̂
P°° /de-,2 P°° d2Gn rda-,2 P«> de d̂ a 

--55^ 

d2e 8 /de 

do2 
= ? (^) 

de 
7 ldaJ (8/7e-1) da 

rp„ [1+2 cos cr] °° 

_ 8/7 
p iPsin̂ a 

cosf+ 
de 
da 

V7 (̂ 5 
p Û5 sin2 a 

+ l) - £ 

[f e - 1] 

sin2 a p tj2 sin2 a 
00 00 

rp„ 

ct ̂  te 2 p tP sin a 
+ l)- e] 

(B28) 

f^ffl££+ i [ihp 
d# d%2 d3 

__ — — 1 d € i 
® = (ps - Poo) t2 - L=ë dô-* 

I = (pa - pj [2 (cot2 a - l) - i— (^ + 4 cot a ̂ )] 
do 

den 

(E29) 
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APPENDIX C 

Continuity and Momentum Equations in Final Form 

The final forms of the continuity and y-momentum equations are 

presented here. None of the intermediate algebra is given as it only 

lengthens the appendix. All notation is as introduced previously and all 

new notation is defined as it is introduced. 

The final form of the continuity equation provides a solution for u^ 

and therefore, the continuity equation is effectively solved for it's 

derivative. Then: 

sin,9 [1 - ̂ L_] cosj -S5s5b C^i) cos^ -J(l+S)2 

r — 

du dp 

"™2 -, ôjou. ~ — 
[p"b^b - (l+S)psug]+ |~(l+ô)sini? s

+ § [^]s[ô(l+ô)=os^ + 

5 sin ̂  + 2(l+ô) sin -9] (Cl) 

The y-momentum equation may "be solved for the second derivative of a. 

This is a very complicated equation and no detail of its derivation is 

given here. 

~ r [r1 " r2 dp2 + ̂  d5 + b2(1+b) ̂  " r5 * e6̂ , + ̂ 'r7 

- WRg + zR9 - R1q] (02) 

where : 

Us d£ 
R = aX2pgus - rXlffl -We pgus + zap^ + z — 
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dvs 

u v B 
z = kr pgë (i+5) - -j-

» 4A a tw. (§)2 - P.V # -4 iy2i 

«1 - f-̂ y t# 5.v. -5 Çsl 

Eg = -bli ( Psis) - n A -Wfpsis - tzPg- z"-s l-f cfj)2 - -J Jp 

k = ®ftpsûs + gwpsus - ©pgz 

\ • y ## p.v. - ^h^Ws #4^# t5s-s i4 

- - d5s - - ap5, 
+ Ps

Ts TT + Vs 3-3] 

h5 .1 (mb> g[^]s -1 [M psq + (M)s, 

B6 = (i+g)2[rîB+pBî|]-(i«)^Ssïs g - - ̂ [(i»S)^-2(i+5)is+s(i+5) 

- -p 
vt . 
r J 

= _ _ â  _ a; _ _ â  

du dû dp dv 

r8 = ri+ [ps di +  ̂  di][% - u] 

Rn = 5PC 

âv dp du • du dp_ p û 

3s à* + 2 dt (di + ̂  + cot 3 (~psT3 + *s dt)_ "77û] 
sin i7 

* 1 0 - à [ D 4 - ^  

(ff'si + 5 + tS- f S - I B ] r (^)s-vs(f)s] 
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+ ~^{4r [(l+6) "J" + "âSS^ + Ps (®)2H1+g) + Vs B' 

Sl - - - + B + 0 <1+ô) TJ + ps (l+6) S] 
+ ps ° = ps ̂  

+ ^ [2(1+6) + c (<D4§3 + (l+B) §§)] + [^r(2ps 
a«0 

dps ,dô\2\ - - d2ô - - de dô - dô dus - d5 
+ dv dV ^ " PsV ^2 ™PsUs d^ d£ ~ ps d>> d^ " s d^ d^ 
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