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LIST OF SYMBOLS

A species density

ci species concentrétion

D heat of dissociation

e internal energy

eg heat of formation ~

h enthalpy

Ht étagnation enthalpy

J dimension index (see Equation L)

k metric coefficients for arc.length in curvilinear system
Kgi) dissociation rate coefficient

Kﬁi) recombination rate coefficient

KE equilibrium constant

L characteristic body length

P pressure

a ﬁelocity

q@M maximum free stream adisbatic velocity
r ' distance measured perpendicular to the axis of symmetry
R gas constant

Rb body radius of curvature

S general curvilinear co-ordinate

T ‘ temperature

Uo° free stream velocity

u velocity component along the body

v - velocity component normal to the body
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X distance measured along the body surface from the axis of
symmetry

v distance measured normal to the body surface from the surface

a degree of dissociation

s LS

Y specific heat ratio

T : see Equation 21

5 shock layer thickness

€ shock wave density rétio

6 body surface angle

Y, : body polar angle

A nonequilibrium pérameter

° molecular weight

o, chemical reaction coefficients

o) ‘ density

o) - shock wave angle

- body meridian angle

=

seé Figure 3

chemical source function
see Equation T3

see Equation T3

see Bquation T3

ed 0 V.*

see Equation T3
Subscripts
A refers to atomic species

b on the body surface



.rotational quantity
at the shock wave
translational quantity
vibrational quantity

stagnation point



.INTRODUCTION

The plunt nosed re-entry vehicles used in present day ballistic
weapon systems and space‘capsules return to the earth's atmosphere at
extremely high velocities. A large portion of the kinetic energy
associlated with these high velocities is converted to thermal energy
by the strong bow éhock preceeding the vehicle, The resulting high
temperature of the shock layer may cause excitation of the normally
inert degrees of freedom of the gas including vibration, dissoéiatiOﬁ
and ionization, The‘excitation of the internal degrees of freedom
gives rise to real gas effects because the vibration, dissociation and
ionization are not in equilibrium witﬂ the local temperature, The
equilibration of these degrees of freedom generally takes a large
number of molecular collisions which introduces a finite relaxation
time, This relaxation time must be compared with some characteristic
flow time to determine the magnitude of the departure from thermodynamic
equilibrium; If this departure is sufficiently large, rate equations
which describe the nonequilibrium effects must be included in the
mathematical description of the gaseous media through which the body is
flying, This. paper deals with a technique for solving the hypersonic
blunt body problem including nonequilibrium effects due to molecular
dissociation,

The hypersonic blunt body problem is usually‘posed as the inverse
or the direct problem, In the former, the shape of the bow shock is given
‘and one is required to construct the generating body and the corresponding

flow field, The direct problem specifies the body shape and the shock.



wave shape and flOW'field are to be determined. Several techniques have
been used to obtain solutions to the direct and inverse problems, These
‘are summarized in reference 13 and only a shart discussion of the more
important methods will be given heré.

Specifying the shock shape in thé inverse problem equivélently )
determines the variation of the leW'properties and their normal derivae
tives along the shock surface, The Rankine=Hugoniot equations are used
to determine the flow properties and the equations of motion specified
to the shock'prOQide the required derivatives, These known quantities
are then used to initiate a step wise integration from the shock to the
initially unknown body, Garabedian and Lieberstein (9) have used this
approach for a perfect gas while Lick,(l?) has extended this to a
bimolecular dissociating gas, Hall, Eschenroeder and Marrone (ll) have
used the inverse method with a complicated gas model including dissocia-
tion, vibration and ionization with the associaﬁed coupling effects to
predict body shape and flow field chafacteristics corresponding to a
given shock, The practical value of the inverse method must be questioned
because one does not know the exact shock shape produced by a given body,
This means that a large‘number of solutions for various shock shapes ‘
must be obtained for each operating altitude encountered, Even when a
large number of solutions have been obtained, the solution for flow field
and body shape are not generally the exactly desired results.

A much more pragtical method would be the direct solution as outlined
previously; Many techniques, both exact and approximate have been used on
the direct hypersonic blunt body problem, The only direct method that

is considered exact is the stream tube continuity method in which the



stream tubes in the shock layer are traced out by satisfying the con~-
servation equations, The convergence properties of this approach have
been questioned and as a result more effort is being expended on different
'techniques; The.best known approximate methods are the Newtonian,
constant density and thin shock theory solutions., The Newtonian theéry
assumes thaﬁ the shock layer is very thin and has the same slope as the
body., The normal component of momentum is then assumed to be lost
inelastically and is transmitted to the body through the shock layer,

The constant density and thin shock layer theories are of less importance
but both use assumptions implied by their names, Unfortunately these
methods give only order of megnitude results over the entire spectrum of
altitudes and velocities of interest, The method of integral relations as
introduced by Dorodnitsyn (6) and applied by Belotserkovskii (2) provides
results that are as éécurate as desired for any velocity and altitude.

The only limit to the accuracy of this method is the effort in the
formulation of higher-order approximations and digital computer time,

The technique used to solve the direct hypersonic blunt body problem
in this paper is the method of integral relations, The first-order
approximation for a dissociating gas using this technique has been formu-
lated independently by both the author and Shih et al. (21) at the
supersonic research laboratory at MIT, A second-order approximation
using a one strip shock with a reacting gas is formulated in the following
chapters, The formulation is made for a general axisymmetric or two-
dimensional body with a éeneral dissociating gas. Specification is then

made to a sphere and a Lighthill gas (18) to demonstrate the technique.



THE GENERAT INTEGRAL RELATIONS METHOD FOR A REACTING GAS

General Remarks

.The menhoa of integral relations is based on a paper by Dorodnitsyn
(6) in which he proposed a general technique‘for solving non~linear fluid
mechanics problems, This technigque has been applied to the hypersonic
blunt body problem using a perfect gas and considerable effont is being
expended e modify the approach for a real gas.

The‘equations'of fluid dynamics are usually in a form which is not
suited fo the integral technique, Dorodnitsyn‘s method redquires that
this system of partial differential equations describing the fluid
behavior be cast into a divergence ferm.,'This form is obtained by
combining the equations of motion in a particular manner, Consider the
following divergence form:

ERPS L s .
5% (X) N u-l)-oo) un)+ "Fy (X,y, ul""’uIl): Li(X:Y> ul)too:un)

i=l,ee., n (1)
where Pi’ Gi and Li are known functions of their arguments and u, are
unknown functions of the independent variables x,y. For simplicity,
consider the domain to be rectangular in shape and let it be determined
by 0 £ x € constant and 0 £ y £ 1. This may represent the shock layer
of a blunt re-entry body after undergoing a suitable transformation of
co-ordinates, This domain is divided into N strips by drawing lines
Vi = l~- Kﬁ; (Figure 1) and the divergence Equation 1 is integrated

from y=0 to yﬁyk, the boundary of each strip,

N

a k k

(Gi)k - f P, dy f' L;dy + (Gi)y___o (2)
o _

e}

il



Each strip in the domain provides one integral relation, If
. there are n equations in the system, we have nN total relations of the

form of Equation 2,

It is assumed that the integrands Li and Pi may be expressed

as polynomials of the formf
N .
_ J :
L; = ;Z; aij(x) v . , (3)

The aij's depend linearly on the values of the Li functions on the
strip boundaries as implied in Equation 3, The use of the polynomial
expansion permits the.evaluation of the remaining integrals in Equation 2,
This integration provides a system of nN ordinary differential equations
in the dependent variables on the strip boundaries. 'These ordinary
differential equations are then integrated from x=0 to x= constant to
obtain solutions for Us e
Specific Formulation for the Blunt Body Problem

The equations of m@tion of a compressible fluid flowing sbout an
arbitrary two-dimensional or axisymmetric body are derived in the
following pages., The analysis is simplified by using the following
assumptions: | |

1) The gas is non-viscous and non-heat conducting.

2) Diffusion is neglected,

%) The gas is a ﬁixture of thermally perfect gases,

L) The translational, rotational and vibrational degrees of freedom
are those pertaining to thermal equilibrium.

5) Tonization and radiation are neglected,



Gibson (10) has shown that the major effect of ‘diffusion is to
make the assumption of frozen flow through the shock with respect to
dissociation invalid and also to smooth or decrease the concentration
gradients immediately behind the shock, This post shock concentration
effect is most pronounced on electron and nitric oxide densities, Since
this paper is concerned with a simple diatomic gas in which the electronic
degrees of freedom are considered frozen, the diffusion effect is neglected.

Assumption 4 may be questioned in the light Pf recent developments
(M). The inclusion of vibrational relaxation and the associated coupling
between vibration and dissociation would only complicate the problem since
the main purpose of this paper is to demonstrate the feasibility of
applying the second order, one-strip shock intégral methed to a dissocilat-
ing gas. Since the gas model is strictly dissociating and the electronic
degrees of freedom are neglected, there éouid of course be no radiation,

The body under considerafibn.in this paper may be either two
dimensional or axisymmetric so long as the body surface is continuous
and has a continuous first derivative, The coﬁrdinate system for such
a body is shown in Figure 2, The origin is teken at the stagnation point
while the x coordinate is distance along the body and the y axis is

everywhere normal to the body. Arc length in this system is given by:

k. ds

I
1 dsy [1+ %] ax

%

dy (4)

k’E d32

ks dss

where kl, KE and k5 are the necessary metric coefficients for arc length

) af = [r, + ¥ cos 6% ad



due to the curvilinear nature of the coordinate system, These coefficients
are on the order of unity for most practical bodies, The radius of
curvature of the body is denoted by Rb, r is the distance measured
normal to the axis of symmetry and ¢ is a unit distance normal to the
X,y plane in two=~dimengional (3 = 0) or the meridian angle in axisymmetric
flow (3 = 1),

The continuity equation in this system is:

o(puks)  I(evk

, Sleriegks)
ox oy

=0 . (5)

where p is the density, u is the velocity along the body and v is the
velocity normal to the body,
The two components of Euler®s equation are:

1 op

1
E—&+V8§+——gy=-‘6§1& (6)

1 10p ' |
Lot Ty TE W ey .. (m

where p is the fluid pressure.
The energy equation is
1 u_ Jp

dh dh dp. h '

P?‘";-‘

Since the total energy remains constant along & streamline in steady

adiabatic flow (16), this equation may also be written:

2
h+ 3= HT = constant (9)

where the enthalpy is defined as:
h=e+p/p (10)
and the internal energy 1ls given by:

cn Lo (e -0 . (11)

I



Here 8y is the mass of the ith species per unit mass of gas mixture, e,
is specific internal energy of the ith species and ez is the heat of
formation of the ith species per unit mass, The summation is over all

- components of the gas, The internal energy for the ith species may be

written:

e. = e, + e, + e, (12)

by
e =5/2RiT
%
€ =RiT ' (15)
r
o L1
s =% w1 BT
A% expﬁ—l

where Ri is the gas constant for the ith species, T is the temperature,
h is Planck®s constant, k is Boltzmann's constant and v is the vibrational
frequency of the diatomic molecules, The energies given in Equation 13.
have been written explicitly for a diatomic gas and are derived from
statistical mechanics (8).

Dalton's law is assumed to hold and the equation of state for a

mixture of perfect gases may be written as:

= Z%: ORT (1)

1M
where by is the molecular weight of the ith species, p is pressure, R
is the univgrsal gas constant and p is the density of the mixture,
If the gas is dissoclating, the reaction equations describing this
phenomenon and the rate equation for each species must be written, - Then

the equation describing a one step chemical resction can be written (20):



m Kd m

e
L ok =0 wla (15)
J=1 Kr J=1 '

where the bj‘s are stoichiometric coefficients of the reactants and
producté and the summation is over all species entering the reaction,
~ The K's are the dissociation and recombination rate coefficients,

The result of the chemical reaction 15 is to produce a net change in
concentration of each constituent of the gas, The rate or species contin-
uity equation governing this change in concentration isf

oo _ Y

_ 4 , _ 16
ol (16)

where ci'is the mass ofhspecies i per unit.mass of mixture and @, is the
net production of the ith species, The ﬁ/gt denotes the usual éubstan-
tial derivative. Byvmeans of Equation 15, a& may Be wriltten kEO):

2 ol m vt |
@ = ui(ug - u{)Kd 1;1; (Aj) dy ui(wi - og)Kr-Tgli(Aj) ;o (}7)
This equation must be summed over ail chemical reactions which give rise
to a net change in the given species, If there are four independent
chemical reactions then the net production of each reaction must be
accounted for in W, .

The equations of motion must be cast into the divergence form of
Equation 1 by conmbining them in a suitable manner, The continuity
Equation 5 is already in propef form for the integral method., Multiplying
Equation 7 by pklk3 and Equation 5 by v and adding, the following diver-

gence form is obtained:

3 3 ok, ak5
5 [klk5(p +ove) I+ 5 k5 puv]= ¥ (p + o) 5 PP TS - (18)
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A similar technique applied to Equation 6 yields:

Otk (p+ o)) + - [k, 1+ ! al{3—0

5% Kz\p + ou * 5% lk3puv %p.uvgf— P = (19)
and the rate equation for the ith species;

§ Ty ] + 5 lomeiey] = ooy | (20)

The governing egquations can now be non-dimensionalized using the

following substitutions:

-~ _u = _ v - _p - _p
u = v = ' p == b=
oy Py Py Py
- _X - X - _r = _R
*=1T Y ET TET R=3
y -1
- h ©
h:—-—-— P= ., (21)
EHt 27,

where q, =./ 2H,G and the subscript o refers to free stream stagnation
M )

values and L is a characteristic body length,

RBquation 5 and Equations 18 to 20 in non-dimensional form are:
O (= == 3 v =3 ==
6§[rJ pu]+§§[(l+%g)r‘] ov] =0 (22)

- . . = '
5 [(1+ L)z (rp + o7 )+ % [rpuv]- Z- [TD + pif]-3 (1+ L yrp cos 6 =0

o | p B

(23)

& [#(r5 + p) I+ %[(15%5?511@ 2 i;‘f‘-’ -3 ;‘;’; 52 fatno 29] = o
| (2k)
& Fie, 1 & 157 (0 + L) Fey1 =5 (1 %;) R (25)
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The general integral method now requires that each of the above
equations be integrated from y = O to the boundary of each strip,
Belotserkovskii has used this technique with both a two and three strip
shock layer (2). His analysis was based on a perfect gas but the trend
indicated in the solutions should be applicable to the case of other gas
modéls. The results he obtalned indicate that the two or three strip
shock layer is necessary at low Mach numbers; while at the velocities of
interest here, the one, two and three strip shock layers gi#e practically
the same results, This paper is based on a one strip model so the diver-
gence form of the equations of motion are now integrated from the body
to the shoék.

The partially integrated forms of Equations 22 to 25 become:

(o)
P TR S SN IR
-a-}.—..c-f rYpudy - [I‘S ps‘ls] _(_15,C+[1+Rb][rs psvs] 0 (26)
o
) _ -
d =) =m=.= ® 1rzd (pz - =2vq_ =) pz_zdn s 4B
= J[ rY puvdy + [1+ = ][rs (I‘pS + o vi)] Ty r Py rspsusvS =
0
5} -3 _
- f (5 +p) +3 T (L+#L) cos 6Bl a7 =0 (27)
. By Ry
)

& I e - I AR Te: e
s f (95 + 5)1 6F -[7] (TB, + BE)1 g2 + [+ -1F5,5.7, ]

O
5 i & -
. _ _ ar _ _
+ f EeM g - 5T p[—_-h-ysine—d—_g]dy=0 (28)
ﬁb dx dx

o} . o
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C [ e, e [ 5ael) a6
pr: purve, dy ’/.p(l—x-_)rlcuidy . (29)

The development p?esented’thus far is usually referred to as the
first-order approximation, For this first-order approximation a set of
total differential equations, which must be satisfied along the body, is
obtaiped in térms of the conditions prevailing at the sﬁock. These shock
conditions enter the describing differential equations with the exception
of the x-momentum and rate équations. The shoeck conditions do not appear
in these equations because their exact forms are known along the body
surface and the integration indicated in Equations 28 and 29 is not

required, The proper forms to use on the body are:

d ap
LoSha.r = 0
Yp ax Py Taz | (5 )

and dc.

I
B P o = wib . (31)

The first-order approximation derives its name from the fact that a
one strip shock layer is used, The order of the one strip shogk approki—
mation can be increased only be retaining more terms in the interpolation
polynomials. In so far as the author knows, up to this time only a
linear representation of the integrand functions has.been used with the
method of integral relations regardless of the number of divisions in the
shock layer, When the first two terms are used to represent the function
across-the shock layer, the coefficients depend linearly on the values of

the function on the strip boundaries, For a one strip, linear case, the
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first integrand of Equation 26 would read:

uJ-- -

rvpou = 7 Bbub + [r p ﬁ - -g Bb ﬁb] . (32)

ot

A second-order polynomial is used in the present study to approximate
the integrand functions across the shock layer, For the second-order

approach the same. integrand reads:

. . , ~3== -
51 = By 6 B, - 5 Ry 8 CEL) 0
Y
+ [ (afaff)s (& 5 B )1 G2 (33)

The coefficients of this expansion depend on both the values of the
functions and their derivatives at the shock, These first derivatives
must be obtained from the equations of motion,

The expanded form of the continuity Equation S‘applied at the shock

wave reads:

e @) 5-5, 8 @) 4 7, -5, By oD, ey

O_Fcn lo'n

R oy & S 5- S ax oy ® 5
where
- b 23 pgu, dr
BS = e -d'.'p-l;l' s - Sj J(l+ '—)COS 9 + ——]_ J J [‘_"E - 6 Sln 9—2—— ]
ax - ax X
Ty R By, Ts
(35)
Eqpation & becomes - -
PstsVs

[(1+ )5 -5, S 1[63., -8, [ 1 - - - B3, T, (6)

U";dl

Equation 7 reads

3 -
(2 v -, -—][—] + T [ —-na = bRl - (D) 61

B W R, & 5
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The energy Equation 8 may be written:

u - - o -
s S By rlo = (&
+ %_ ox dy Py L 6/Rb_ o%

2

where the derivatives of the enthalpy can be explicitly written in terms

o w'rs(éf-%)sk 0. (38)
oy ,

of the other unknowns‘and their derivativescwhen the gas model is specified,
The concentration derivatives at the shock are provided by the rate
Equation 16 assuming the flow is frozén with respect to dissociétion
through the shock, This is a reasonable assumption since the shock wave
thickness is very small compared to the dissociational relaxation length.

Under this assumptilon the concentration derivatives are:

oc, 5& [1+ 5/Rb]‘
i

S

- (39)
% b J[(+8/R )V -1, df’]

Equations 33 through 38 constitute a set of simultaneous algebralc
dp ap ou acl

equations in the derivatives —, and —= evaluated at the

% ¥ oF oy
shock, The coefficients of Equation 33 may now be found and the inter-
polation polynomials are formulated,

The final equation necessary for solution of the problem is the

followlng geometric relation:

Q? = [1 +:§] tan (o - 6) . (ko)
dx Rb ’ :

This relation is derived from the geometry of the shock layer,
The boundary conditions must be specified to complete the problem

description, On the body surface

vy, =0 | ' (k1)
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which insures that there is no mass flow across the body surféce or,
equivalently, that the body surface is a streamline,

The boundary conditions at the shock take the form of a set of
equations in 5;, BS, 53 end T_, The gas is frozen with respect to
dissociation through the shock as previously stated, It is assumed that
the gas is in vibrational equilibrium immediately after passing through
the shock, This leads to the solution of a set of simultaneous equations
for the shock variables by means of an iterative scheme since the shock
temperature Ts cannot be determined explicitly becaqse of the form of the

vibration term in the energy equation. The equations to be solved are:

p U sin o = Esis cos ¥ (42)
U, cos o =g, siny - ()
D Yo [ S5 P oeos g L
B, +5—mr b U st o= By gy B & co '( )

(L5)

where the subscripts « and s refer to free stream and post shock conditions
and | is the angle of the post shock velocity wiﬁh the shock normal,
Figure 3 shows the geometry of the shock waves.
Equations 9, 14, 26, 27, 30, 31 and 40 are the equations which must
be solved for the unknowns g, 5, ﬁb’ Bb’ pNy cib and T,. For convenience
the following list presents a summary of variables and their interdependence,
Unknown dependent variables
8(x), o(x), G’b(i)’ I—Jb(i): f-lb(;i), Cbi(i), Tb(X)
Given quantities

5@) 509’ Uoo
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PR, B(R), a(R) .
Parameters whose functional dependence is known
as (G): ;’S(c): BS(U)’ 55(0)

from Equations 42 to 45,

Boundary conditions

u (o) =0 o(o) = 3 8(0) = §
where 50 is an assumed value of shock stand-off distance which is
initially unknown in the analysis,

The matching condition used to obfain the proper vélue of 5o.takes
the form of a singularity in Equation22, This equation may be exﬁanded
into the folléwing form:

—=+B=0 ’ (46)

ax

A[i_lffiz ]dﬁb

where A and B are continuous functions of the dependent and independent

varigbles, The x-momentum equation may be written for points on the body

surface: - -
Go2.. L @
dx o, ax :
and
. dp d In p
ad1ni = -1 —2 L (L8)
u, = = .
b N
The:efore
d 1n p, T
— . (49)
d 1n ub T [_:g ]
dpb

substituting this in Equation 46
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—2 - N
% o, |
A [ 1~ ——-'a—ﬁ-};- ] 3= + B=0 . (50)
r (—) - '
d
Py
The singularity used by Dorodnltsyn and Belotserﬁovsnll 1s apparent in
dp. an
Equation 50, When u% = [ ——— b » —= becomes infinite unless B also

vanishes, The simultaneous vanishlng of both coefficients of Equation 50
insures that the derivative is finite, This condition is met by varying
the shockvstand-off distance 50.&5

The péint at which ﬁ% = [' —= is usually referred to as the sonic

dey,
point, For equilibrium and frozen flows this corresponds to the equili-
brium and frozen sound speeds since the flow is isentropic along the body
surface, In non-equilibrium f£flow the thermodynamic processes are non-
isentropic and the singular point on the body can no longer be taken as
the sonic point, ’

One of the disadvantages of the one strip shock layer approach is
that all detalls of the internal flow field are lost, A technique giving
streamlines and other flow properties has been formulated recently in
reference 21, The N stfip approach, using linear interpolation poly-
nomials, provides as much detail as is required on the strip boundaries by
increasing'N which provides a smaller grid size,

Several problems arise when the higher-order strip theories are -
used, The one strip method is a 51mple two p01nt boundary value problem
in which the initially unknown parameter is determlned by the regularlty

condition on the velocity derivative at the sonic point'on the body surface,

If two or more strips are used, the problem is complicated by the occurence
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of singularities in the velocity derivatives along the strip boundaries

as well as on the body. This again is a type of two point problem but

the initially unknown parameter at the strip interface is the velocity

on the stagnation streamline, If a two strip shock is assumed, the

initial velocity midway between the shock and the body on the stagnation

streamline must be assumed as well as the initial shock stand off distance.
The one strip shock layer with a second-order interpolation poly-

nomial requires the matching condition on the body surface only while

providing better accuracy than the true first-order approach, This

technique is applied to a sphere in the following chapter,
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THE SECOND-ORDER INTEGRAL METHOD ATPLTED TO A

SPHERE USING A ONE STRIP SHOCK

The simplest geometric configuration that can be ﬁsed to demonstrate
the practicality of the devélbpments of the previous chapter is a sphere,
Hence, in the illustrative example worked cut in this paper is a spherical
body surface is assumed, The fore portion of many re-entry vehicles are
neérly spherical. so the results of the example should be of practical
interest,

The coordinate system used is the same as that outlined previously‘
with the exception that the origin is now at the center of the body and
the x coordinate aloﬁg the body 1s replaced by the polar angle f) as
shown in Figure 4, Conversion from the system of Chapter II to the

spherical system can be made by noting that:

ae _ _ 49 _ _ 1.
ax = dx Rb
a1
dx R, d.-9
T = sin a9
v = B (51)
dr :
b
a—};—-cos«?

vyt =y o+ Ry

L = Rb .
The non-dimensional distance x is the same asfﬁeuﬁ.note that derivatives
with respect té y! are the same as with respect to y since Rb is constant,
The body radius of curvature R.b is taken to be one foot for simplicity.

The integral equations necessary for this example are Equations 26



20

and 27, In the coordinate system of Figure 3 they become:

o}
géf Fouay - [Fp il G + [1+ BIFH7,) =0 (52)
o]
5
a = = o= - - - = - - - - a3
T f rouvdy +[l+6][r§I‘ps + psvi)]— b I‘pb - TP UV, R
O
- B
[ AR (14 F) cos 03] a7 =0 (53)
(@]

The specific integrands which must be approximated by polynomials are:

TN, T, (I + A1 E, (L+9) B . | (54)
Each of the first three of these functions can be approximated by means
of the coefficients of the polynomial expansion as determined by the
known:conditions on the body and the shock and the first derivative on
the shock, The coefficients of the expansion (1 + y)D are obtained by
using the conditions on the body and the shock along with the:first
derivative condition on the body, The reason for using the normal
derivative at the body is that it can be found readily from Euler's

Equation 7. On the body

dp “ba%
ﬁ)b = = (55)
y

This is a much simpler expression than the normal derivative at thé

shock,

If the necessary integrations indicated in Equation 5? and 55 are
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carried out, the following forms are obtained:

5 C L - - .=
FE) 8[2(l+6)psussin..9 + ppusind - —B- Brpu) ]} -(1+5)sind p u o

W=

s’ s dp

, 6
+ (1+8)2 BSGS sind = (56)

14 S si '_._)"‘*'—"" (145 pbpn S2(4.% . _—
3 a_-_ﬁiS §1n~9 (= o u vz a(éﬁ&) (aglj'\’)s]} + Lélia_)_ Sin‘9§:‘9 [Bpuv]S

¥ 3y

S sind ==~ a Bcosd 35 - - -  d(1+d) ,dpuv
- 2 PssVs T3~ 3 [ 2 Ps%s's (o) ( ;—r )]

sin 9 a5 M3 - - - B(1+5) ,dpuv § sin .9 (4+35) d .- -
- 3 dD[E Pls¥s™ T2 (6_ )s] 3 2 (sss

’ Y
+ (o) Sll’l—a (l+25) 36 (Bpl_lv)s =0 (57)
' Y

The derivatives with respect to ¥ in Equations 56 and 57 must be
evaluated from the general equations of motion specified to the shock,
The derivatives of the shock variables with respect to —3 can be obtained
from the solutions to the obligque shock equations, AThese expressions
will be derived ‘later.

The continuity Equation 56 must now be expanded and combined with
the ~J -momentum Equation 47 to explicitly exhibit the looping or singular
condition on the body surface, If Equations 56 and 47 are combined,

the following form results:

W au _ oL

P8 sind [1 - —-;L(ﬁ—;— ] v i Sﬁbu.bcos S - 3(148)% p v, sin J
&,

N . s d(asas) ad - = == =
-2(1+5)8p uscos3 - 26(l+5)sin19—a—-3—— - sin»”m [pbub—(l+8)psus

- - - = -2 S i o

+25psus]+6 _g_% [6 él+6)s:.n\9 pu] N 82 _g_:’ [B (]a.-l:S)sn.nQ ou ]S .(58)
' v Y
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The entire right hand side of this equation must vanish when the conditionf
dp

B@ﬂ—f—“’ (59)

ooy |
‘1s satisfied, This condition is fulfilled when the proper shock stand-
off distance is used,

The gas model to be used must be éhosgn before any of the §Aderiva-
tives in thelpreceeding equations can be eﬁaluated. For simplicity the
gas is taken as a simple diatomic gad following Lighthill (18), In the
Liéhthill modelvit is assumed that the energy stored in the vibrational
degrees of freedom is one half of‘the fully excited'classicai value, This
simplifies the analysis in that the vibrational energy is now a linear
_ function of the temperature rather than a complicated expression similar
to Equation 13, The vibrational energy is then taken to be:

_ RQT . . (60)

v ——

2

[S)

The enthalpy of the gas is
h= (Wa) R,T + 0D (61)
The energy equation for a Lighthill gas may be written:

e P
2 2

=(M+oc)RgT+ozD‘ +

HT=h+ . (62)

Equation 62 is non-dimensionalized by using the substitubions given in

Bquation 21 to obtain:

- () +ad + T (63)

PO] 1

Since the gas model considered is a pure diatomic gas, only two chemical

reactions are needed:

x(1)
Ay + A A= 28+ A

(1)
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A + A, -—(—2A+A2 (6%)

where A2 denotes the molecular species, Both chemical reactions contri-
bute to the source function given in Equation 17,
Let o be the mass fraction of the atomic species., ‘The species
continuity or rate equation may be written A
u_ g‘ ey 5_ K(1 p(1-0) _ ope(1) oca® e o(1-)® _ Kl(?2) p%oF (1-a) -
1+ p T gy by
Rb A A A A
| (65)
where the superscript (1) refers to the first reaction and (2) to the
‘second. The forward and reverse reaction coefficients are denoted by
Kd and Kr and the molecular weight of the,atEmic species is given by
Mo This rate equation is now specialized to the present example by

applying it along the body surface,

_ 12 22 (1
o ?’2 K(1) o %, (1) 2K(l pbab il pz(l %)~ Kl(«E) pbé%f %)
M P-A Ty Ha

(66)

A more meaningful form for nonequilibrium may be obtained by non-

dimensionalizing &nd introducing a nonequilibrium parameter, Let

e
B = Em
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e
KE = 2p°° :
T
L= Ry (1-a) - R (67)
using these substitutions the rate equatién reads
d :
G e - A AR e )] (68)

The parameter X is a measure of the magnitude of the depérture of the
gas from thermodynamic equilibrium, For equilibrium flow A is identically
zero while for nonequiiibrium conditions A takes on a non-zero value which
depends on how far the gas is out of equilibrium,

The rate and energy equations for the assumed gas model have been
derived and the §-derivatives of the dependent variables at the shock

wave surface must now be obtained., The equations of motion are specified

to the shock in the following form:

Continuity
O 3 |z 2@y L )i, 21 - ) (69)
(l+6)ps (-a_&'.—)s - pS al 55' S 7 s 8 a9 a:;"- S g’
X-momentum
3 t(1+é>%s-as%n-:-%1s- & PP] -0, (70)
Y
vy momentum
5, 1(8)7 -3, By a1 (48) (B, =, | (71)
oy oy :
and energy
2 5 19 452 7 ] surp (B - Q (72)
ps us —-—:]S+ps VS[—'_-]S - [ -1 = s .
oy © T T oy . d

where



dpu - = - - cos )
h>s T [E3F s T2 PV TP sin.9
I aF - - .ag
s = - 2% ~ T [déﬂs - Pl [a§]s
- - - = .dv
¥V s = P i - psus[a5]s
©. == br=2 DI
Py oy
. 8RB 5 (145)
(=1, = e . (73)
oy (]_-1-6).vS - u E’%g

Equétions 69 through 72 are used to evaluate the & derivatives of ﬁ, 5,

p and p at the shock., The solutions are given in Appendix A, Angular

derivatives of these y forms are also required and are given in Appendix A',
The angular derivatives of the shock variables are required to

obtain solutions for the normal derivatives in the above system. The

shock variables and thelr derivatives are provided by solution of the

Rankine-Hugoniot equations, The equations that must be satisfied across

the shock are

Bw ﬁm sing = BS as cos (78)

ﬁm cos o = is sin ¥ (75)

rp_+p, 02sin® g=T B+ ES az cos® (76)
52 . =2

7/2 T + 5 = (W) T, +ad + = . : (77)

The solutions to this system are given in Appendix B as functions of the

shock angle o which is one of the unknowns in the problem,
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The formulation of the one strip shock case is completed by the

equation of state:

b = (1+a) ot (78)
where T = T/TOo and the geometric equation
P
a8 = :
5= - (148) cot (o +§)) . | (19)

The following list presents a summary of the dependent variables and

refers to the equation providing a solution for each,

unknéwn dependent variable obtained from equation
u c1l
o g2
Dy 30
o 63
A, =
T, 78
5 79
boundary conditions
“o{o) = n/2 ﬁb(o) =0 5(o) = 50

The equations referred to in Appendix C are the final forms of the
continuity and y-momentum equations, The y-momentum equation is
second-order in ¢ and provides a solution for o. The continuity
equation as previously discussed provides a solution for ﬁb,
The_genefﬁl procedure followed in obtaining the required solution
is to assume an initial value of the shock stand-off distance 50.
Using this value of 50, the equations of motionbare integrated from

the shock to the body along the axis of symmetry, This provides the
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initial values of the dependent variables at the stagnation point, The
governing differential equations are then integrated along the body
starting from the axis of symmetry. This integration proceeds until
Equation 59 is satisfied or the right hand side of Equation 58 vanishes.
If both of these conditions are not satisfied simultaneously, a new value
of 55 is chosen and the procedure is repeated until continuity of the

velocity derivative on the body surface is guaranteed,
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NUMERTICAL PROGRAMS AND RESULTS

The analytical formulation of the nonequilibrium blunt body problem
of Chapter III must'be put in suitable form for numerical computation,
The complexity of the problem dictates that the numerical computations
be divided into two sections, First, the fluid properties along the
axis of symmetry must be known to initiate the integration required in
the problem and second, solutions éf the differential equations which
provide body conditions and shock shape must be thained.

The Stagnation Streamline

The proper values of the fluid properties at the stagnatiﬁn point
on the body surface must be known for a given shock sténd-off distance
beforé a complete solution of the problem can be realized. These values
must be obtained by solving a set of simultaneous differential and
algebralc equations alongvthe stagnation streamline, On'%he-S =0
streamline, the velocity component along the body surface vanishes., This
condition applied to Equations 65, 7 and 63 leads to Equations 80, 81 and
83. Equations 32 and 84 are just the regular polynomial for pressure
and the equation of state, DPartial derivatives with respect to § are
replaced by totals along the axis of symmetry since the dependent varisbles

are only functions of y, The required equations are the rate equation:

w_ PRUR
— = T (20 +p (1-a)] ) (80)
dy v
Euler's equation
dv r dp -
Te-= =2, (61)
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Pressure polynomial -

- 1 5 vy 5 '
p= - lag ey v e, (224 2 ()21, (82)
1+y & < o} .
0 0
energy equation
)]
pT Ha
- 14+ .
p = 'i‘; P) (85)
L oaob - =
2 aD 5
equation of state
=2 (84)
(1+)p

The continuity equation applied on the stagnation streamline is
not used in this system but is replaced by the pressure polynomial, The
polynomial expansion is used everywhere in the shock layer due to the
approximation of the pressure integrand of Equation 53 aﬁd therefore,
it was decided to apply it to the axis of symmetry. Tﬁe technique used
by Shih et gi,(El) differed from the method presented here in that the
limiting form of the continuity eqﬁation was used in piace‘of Equation 82,
When the continuity equation is. used, a polynomial expansion of the Bﬁ
product is required to obtain an expression for the é% which appears.!
This leads to a somewhat more complicated system of Szuations. Thus the
pressure polynomial expansion is used instead,

The accuracy of the solution to the main problem depends directly
on the accuracy of the solution to the stagnation streamline problem,
Since an approximate expression is used for the pressure, it is imperative

that the approximetion be as good as possible., For this reason, the pres-

sure expression is written as a cubic which is a higher order approximation
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than that used for rYpu in Equation 33, - One more boundary condition is
required to obtain the next term and this condition is obtained from
Euler's equation which requires that the normal derivative of the

pressure at the body vanish since v vanishes, The boundary conditions

are.:
5;_ =P ‘ : ﬁ_ - = i)
¥y=0 P y=d ®
dp - -
== =0 d d
<a§)§=o =), =5, . (85)

dy y=0 dy

To satisfy the boundary conditions, the coefficients become:

&, = Py a, =08

= (532 5, - By) - B, (145)(),

o = 8, (5)(), - 55, - By - - (86)
\ y

The technique used to solve Equations 80 to 84, with the a;'s
given B& 85 and 86, is based on assuming an initial shock stand-off
distance 50 and body pressure ib' The differential equations are then
integrated from the shock to the body. The assumed body pressure is
corrected after each pass until the velocity vanishes whén y=0, A
close examination of the method indicates that the solution of the
stagnation streamline problem depends heavily on the characteristics of
the assumed polynomial expansion for the pressure across the shock
layer., The presSuré increases continuously from the shock to the body
and available information (21, 17) indicates that the pressure curve
is concave downward at all points én the axis of symmetry, ©Since the

pressure curve is concave downward everywhere, the second derivative
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must be negative everywhere, If the second derivative is obtained from

Equation 82 it takes the form:

25 2 &, 3 . 5
E:E=—':[-*+:aé(¥~)-§-l_3] . (87)
iy L+ ¥ Bi 5§ 8, ay

This function must be negative at both the shock and body, At the

body
2= 23, . ,
£B ===% <o (88)
ay® §=0 &° ‘ .
(o]
and therefore
- - - - - dp
(3428 ) (g - B,) - B, (1+8.) [é)s <0 . (89)

This equation provides a lower bound on the values of ﬁb that may be
used as an initial assumption in attempting to solve the required

systems of equations., In particular:
5, (1+3.) -

- 281, . (90)
5+260 dy

Py ~ Pg -

The same condition applied at the shock yields:

2= a, 33, =
£2) =S =+ =-(B). 1 <o (51)
d y=5 1+6O 60 60 dy y = 60
or
a, + 3as - 52 [R]_ <0 . (92)

dy

Substituting from Equation 86 the following form results:
Bo<B - ——2 (%) (93)
b 8 = -’s ° :

Equations 90 and 93 provide upper and lower bounds on possible body

pressures that may be assumed to obtain a solution on the axis of
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symmetry anfl yet satisfy the second derivative condition, It is

interesting to note that the allowable range of ib may be controlled

by proper combinations of 50 and (ég)s

dy
Table 1 lists the flight conditions and various physical constants

used to compute a stagnation streamline solution for oxygen under the
speclal conditioﬁs indicated, The free stream conditions and the gas
model dictate the values of the post shock variables and their derivatives.
For tﬁe Lighthill model, the normal derivative of D on the staénation
streamline at the shock is large for nonequilibrium flow, This is due to
the assumption of frozen flow with reséect to dissociation through the
shock and the accbmpanying steep concentration gradients immediately
ig]s is fixed, the bound on 5b is now controlled
Yy

by the assumed value of 50. For values of SO which are known to be

following the shock, Since [

approximately cq:rect (21), the allowed range of ﬁb is too small to allow
a solution along the axis of symmetry, For these free stream conditions,
a new model for the pressure expansion must be obtaiﬁed._ It is required
that the representation satisfy the-same four boundary conditions of
Equation 85 and that the second derivative condition also be met,

Since the allowed range of body pressures 1s too restrictive to allow
a solution along the stagnation streamline when a third-order polynomial
is used, an elliptic approximation was used, The elliptic form was
chosen because of its geometric simplicity and the fact that all required
boundary conditions ofvKuation 85 can be satisfied, Temperature, density,
pressure and degree of dissociation brofiles are given in Figures 5, 6, T

and 8 for both equilibrium and nonequilibrium flows, These solutions were
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obtained through an inverse process in which the integration.proceeds
from the shock to the body, A shock stand-off distance 50 and a body
pressure are initially assumed in the analysis, and the body pressure is
adjusted after each pass until the velocity vanishes when y = 0, Note
that the only alteration required in Equations 80 to 84 to obtain the
-equilibrium solution is that the éate Equation 80 is replaced by the
equilibrium condition A = O, | |
In both the equilibrium and nonequilibrium solutions the elliptic
pressure form wés used. It is apparent that the elliptic approximafion
is not satisfactory if Figure 6 is carefully examined, The equilibrium
solution is really an isentropic compression of the gas from the shock
to the body whereas ‘the nonequiliﬁrium solution gives rise to an entropy
increase in the compression because of the finite reaction rates., One
of the major results of an entropy increase in-an adiabatic flow is the
resulting loss of stagnation pressure. Since both flows are required to
be in equilibrium at the stagnation point, the equilibrium stagnation
pfessure must>be higher than the nonequilibrium pressure and the tempera-
tures also follow the same tfend. Figures 5 and 6 indicate the opposite
effect is true, This is an unfortunate conséquence of the elliptic
approximation and more directly of the domination of nonequilibriuﬁ
- pressure expansion by the first derivative of the pressure at the shock.
An interesting method for determining the stagnation point pro-
perties in nonequilibrium flow may be derived if one knows the normal
derivative of v at the stagnation point, If the rate Equation 80 is
differentiated with respect to y and applied to the stagnation point,

the following is obtained:
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da - (1) A

[dy] [dy]O [p K771 [2a + g (1-0) g)[:i—{-r o (k)
where

=R, (1-0) - p & | (95)

and _

- G o B Ly i

y

| | (96)

Substituting Equation 96 into 9k:
{[i.\_’-]o + K(l) (2o + B(1-a) ][ l+ a dKE T+ K‘E + Eozp]} [——]

day

* [Bﬁl(,l)]O[Ea +8 (1-0) 1{F - Ll—p-oﬂ'l‘ iﬂ—;% g%?;]o =0. (97)

Eguation 97 is a homogeneous algebraic equation in the two derivatives
aQy

=1, a (28 ]
ay © ay °

The energy equation may be written in the form:

v -
F=x+ab +?_’—_%§E . (98)

Differentiating with respect to y and applying the result to the stagna-
tion point:

(5 —32 7 (8 _ (ke Db, o

- -"0 140 =2 "0 "=
o (14)® ° ay 2 ° ay

5=0 . (99)

Rquations 97 and 99 constitute a pair of homogeneous algebraic equations

in the derivatives [Q%] and [ ] If a non-trivial solution to this
dy

system exists, the determinant of the coefficients must vanish, This

condition yields:
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(L+a -{[dv] + K(l)[ea + (1~ a)][l+a T ;;E + KE + 2@5]}
o]

+ (R fea+ B (10 [0 + L E10 - 23

o(1+a)®

1= 0. (100)

All conditions at fhe étagnation point now can be determined providing

[—%] is known. The unknowns are P, p, & and T and the governing

algebralc system is comprised of the equilibrium condition A = 0, the

energy Equation 98, the equation of state 84 and the constraint given

by Equation 100, The derivative [gg]o is determined froﬁ the assumed
dy

pressure expansion across the shock layer by using Euler's equation,

Differentiating 81 and applying the result to the stagnation point:

av r &p 5
(<51, =--= =212
p

ay®

A computer program for solving the algebraic system described above

. (101)

was written using both fhe polynomial- and elliptic pressure expansion to
determine [-—] The program was written by assuming an initial tempera-
ture and thii caelculating p,-p and o from Equations 95, 98 and 84, These
values of 5, 5, o and T were then substituted into Equation 100 to see if
the assumed T was in fact a zero. A corrected value of T was then used
and through sucgessive passes, a solution was obtained,

The zéro’s of Equation 100 depend on the value of [g-g]O which in turn
depends on &———] The second derivative of the pressuriyalso depends on
the body pressure due to the approximate representation in the shock
layer, For both pressure expansions, the digital computer program would

iterate until values of body temperature and pressure were low endugh

that the second derivative of p would change signs, Reference to Equations
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88 and 89 indicate this possibility for the polynomial while this
behavior in the elliptic case means that the pressure expansion has
jumped from the upper half which gives the true expansion to the lower
half of the pressure ellipse, This is equivalent to reducing the body
pressure to a value somewhat less than the shock pressure, This
possibility for the elliptic pressure curve is presented because the
body pressure is computed independent of position on the ellipse, The .
first derivative has a fixed sign and when the body pressure assumes a
value leSs-than the shock pressure, the approximation moves from the first.
to the third quadtant, This causes the change in sign of the second
derivative,

The maximum value of the second derivative of the pressure on tﬁe
body would be zero since the stagnation pressure is the maximum value in
the shock layer, A solution setting the second derivative equal to zero
was obtained but is‘not included here, The solution is independent of
the shock layer pressure variation under these conditions, The values
of the stagnation point variables obtained by integrating the nonequilibrium
differential equations and by the second or algebraic scheme do not agree
as is expected, The algebraic technique does show promise in that the
results of the two solutions are the same order of magnitude at the
stagnation point, At present, the integration method would necessarily
be used to determine the stagnation point thermodynamic variables,
because the algebraic method is not in é usable form since more research
on the pressure second derivative is required,

Main Program

The numerical aspects of the differential system giving the required
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solution to the hypersonic blunt body problem were not fully ihveétigafed
since the problem Waé terminated with the stagnation streamline, . The
basic idea used in solving the differential equations as set down previously
in Chapter III is to assume a shock stand—off disténce 50, integrate
along the stagnation streamline to obtain starting conditions at‘the
stagnation point and then integrate along the body surface until the
matching condition (Equation 59) is satisfied or until the numerator

or denominator associated with the matching condition in the continuity
equation vanishes, A neW'valué of 50 is assumed and the above process

is repeated until cbntinuity of the wvelocity defivative is guaranteed,
The details and numerical problems associated with this technique are
discussed in reference 1k,

The method used to obtain solutions for the first-order approximation
in reference 21 is a modification of the formal iteration procedure given
above, Solutions of the differential equations along the body are
obtained for upper and lower bounds on'shock stand-off distance 50.

A logarithmic search procedure is initiated using the stored upper and
lower bound solutions, This techniéue eliminates the necessity of solving
the stagnation streamline portion and a good part of the body surface

part of the problem, The results obtained seem to indicate success in
using the technique, For further information reference 14 provides a
more complete discussion of the details,

Examination of either the continuity Equation Cl or the y-momentum
Equation G2 reveals the occurence of removable singularities on the axis
of symmetry, These singularities prevent the initial derivatives in the

numerical integration program from being obtained directly from the
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differential equations., A limiting form for the necesséry derivatives at
the stagnation point was obtained by assuming [%%]o = ";f This is a
reasonable assumption since the shock and fore ﬁortion of a blunt body
have nearly the same shape in the vieinity of the axis of symmetry,

Using this assumption and taking the limiting form of Equations 01 and (G2:

By g, 1 @y P 0 (e (148, (5 +9)5,
92 °  PIe) ta © ore (5,8,) 252 (ByD,)
+p 07 = 3(145_)%e o
—Z . [4+550 - ——2 0 (148 )3(8rp_p T (1-e )+e T (148 ) @D,)1
- " = 2 0 S ® e} O ® o] o
2r (pg-p,) B 82
Py - -
+———— (3+4E_ + hai) (102)
2(p,-B,,) 8
do, _
Tplo = 1 (103)
[dﬁb] _ o, 5.0, (1+5)) ] 38,0207 (L-¢,)
V0 2, B SheE ] ey (U5 b )
& : . o
b2 (e 5,0 (1-e )+ T(5_-B,) (2(ED) - 12+ = (£5) 1)1
Eabeoﬁw 0" ® o) s T dﬁF o] l-¢ Al o) )
0,0, k38 (148 )%
=~ [2eo+% _.O 1 o ' ' (lOll-)
Py o 5,

Notice that the second derivative of ¢ is required since the governing
differential equation is seconé-order.Because of the symmetry of the pro-
blem, the shock angle o and the velocity along the body surface Gb
are the only dependent varisbles that possess non-zero first derivatives
at the stagnation point, The initial derivatives given above along with
the stagnation values of the dependent variables are sufficient to

provide the starting conditions for the integration of the governing

differential equation,
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RECOMMENDATIONS FOR FURTHER STUDY

The next step in continuing this problem must be more work on the
stagnation streamline, The discussion of the results shown in Figure 6
clearly indicates that a neW‘techﬁique is'needed for determining conditions
along the axis of symmetry; A éolution-using a linear approximation for
the pressure should be computed and this should be compared against both
the elliptic solution and the results of reference 21,

The difficulty encountered with the axisvof symmetry is the large
value of the pressure derivative at the shock. A different or more
realistic gas model may reduce this pressure derivative to a value which
would allow the general polynomial expansion for pressure to be uéed.

It diffusion effects are included using the present gas model, the same
result may be obtained although current literature would not support this
as the diffusion effect would be small, A'considerable amount of effort
could be expended on determining the properties along the stagnation
streamline and at the stagnation point. Much remains to be done in this
area for real gases.

The main program for determining shock shape and_body flow parameter
variation must be programmed and results obtained, This is a rather
difficult probiem as 1s evidencéd by the complicated fprms glven in the
appendix., The debugging of the mainiprogram may take a full year or even
longer, The results obtained from the solution to the blunt body problem
must be compared with those of reference 21, A comparison to determine
which method is actually better is impossible at present since only

the firsf—order linear solution has been completed, To draw any
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meaningful conclusions, a comparison must be made with both the linear
one strip and two strip shock solutions,

Thebdiscovery'of an algebraic méthod,for detefﬁining the stagnation
point properties may be the most sigﬁificant result of this investigatioﬁ.
This ﬁechnique as described in the previous chapter requires that the
normal derivative of the veiocity at the stagnation point be known, This
normal derivative was obtained using the approximate pressure expansions
used in the éolution of the.stagnation stfeamline prdblem. This method
proved to be unsatisfactory as previously discussed,

An exact solution for the stagnation point properties dsing the
algebraic ﬁethod necessarily requires that a solution of the general
equations of motion for the velocity derivative be obtalned, Solving
the equations of motion for the normal derivative of the velocity éf the
stagnation point is a difficult problem because some of the governing
differential equations contain no useful information when they are
applied along the body surface., The x-momentum equation is an example of
thisbehavior,

If an exact solution for the normal derivative of the velocity at the
stagnation point cannot be obtained, another technique may be of value,
The pressure variation in the shock layer and along the body surface is
only slightly affected by the nonequilibrium state of the flow (15, 21).
Since the required derivative of velocity depends directly on the second
derivative of the pressure at the sﬁagnation point, consideration should
be given to the idea of solving for the normal derivative of the velocity
using perfect gas. This assumes that the pressure curves are of the

same shape in both the nonequilibrium and perfect gas cases, Any
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result obtained using this technique should be of wvalue,
- All computer programs used in this investigation are on file in the
Aerospace Engineering Department and should be consulted for any

information concerning numerical techniques or required programs,
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Table 1, Atmospheric and thermodynamic data

Free Streanm _ Coefficients
Conditions (19) for Oxygen (11)
10608k
Altitude = 150,000 ft, KE = (221 T
T
P, =2.T25 psf (1)
K, = 130911
U_ = 15,000 ft/sec '
. _ 3085,71
t_ = 480.7 °R 8(1) = =5

D = 715412
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Figure 3. Shock wave geomeiry

Figure 4, Spherical body
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APPENDIX A

Normal Derivatives of the Dependent Variables
and Angular Derivatives Evaluated at the Shock
The system of equations that must be solved fof the normal deriva-
tives at the shock are given as Equations 69-72, They are repeated here

for convenience,

(145)3, [-:—;JS -5 B :;] F [(18)7_ -5, 89128 = N (a1)
5 L(145)7 -i, 2 [5—1}15 -r & apl =y (a2)
o, [(148) v -u, & [—— + T(148) [-1_3]8 =<, (43)
= [—1 - 5RE [9—‘—}15 12 1 s (21 - @, (ak)

oy dy -

where the right hand sides are defined in Equation 73. Let A represent

the determinant of the coefficients, and

- - - a8
= (148) v - ug E% (A5)
then:
A -~ ad
-5 <2 0
(1*6 Ps Ps T ¢
- as
0 ps ] 6} T -a:,
A =
58 e 0 0 r{1+8
- - - - =
= Vs g B ur P hr og
or »

AR e {u@sr ((5)7 + (33)21 - 55, cg}. - (a6)
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Solutions for the normal derivatives at the shock are then:

OV L ‘1"2 - - - = - 48 - -
L_a.;_f]s = ._%__ (1+5) P, P +DZ9 To, (1+3) [lLI'pS g% - psusc]
+ %’ p T [urps(-‘é—g)? c(lp e + p_u it;3)] + -%’ras (148)c® (A7)

R oy [WD(148)% b - ¢ py (4 - (148) v,)] (a8)
3 A - /= 48 - ,d5y2
[-a—;-]s = % pzl_‘ {(l—l—&) (U.S 5-3+ ll-C:) + VS (@) }

. @_52 5 g.% (ke - (148) 7) - (148)% §)

=" a a6 + he - (148) 5}

[X Pg s d« s

- %—E 52 o [(145) + (8)2) (49)
[':'?]s % 2 o [ur (14) B, + B, 7, ©] - =8 o (B §3- 5, 6, o)

COize o Do 2 2 | (A10)

The continuity equation and §-momentum equations require angular
derivatives of the normal derivatives of pu and puv at the shock, The

normal derivative of pu may be written

[%--?]S =EA-]‘1‘(1+S)5§ [4r(148)B, - 36, (148) V2 + Esﬁ§(1+5)+ o u v, g—i]
- e rstum, 5+ 5,7 B+ 6., (49 S5,E 1 ()
- -Eszi Te [LI'p, %5 + 3p.u, ]
- % IF c(148) [, (146) + ¥_ a5/ad ] (a11)
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Let

= p_ T [(148)2 + (a5/a9)2] -35 ¢2

~ then

2

= 0y I'cF

A

The normal derivative of pu may be written:

= D;(l+5)
cF

(28t

. [AP(L@)
3y

S

Vs

+——

Y
F

a5

(1+8) 9

) [4Tpg 75+ Py v2 —j3-+ hp u v (1+8) ~3p U

<t

[MFpS I

+ 3p us c]

as

- %5-(1+S) [ﬁs‘ (1+8) + w'rs 5

Let

(1+8) [4r (1+4B)

(o4 ]

Iy P + 3 P U,

c

Q:lch
2

- - a5
(1+3) [MPp T

1

+ 0 V2 -—-‘9+4puv(l+6 ~3pg

S

as

(148) [ﬁs(l+5) + Vg 35

- DsA
cF

\VA
cF

. ohp

ckF

. COE
cF

+

215

55-353 (1+8) v§+pu (l+6 ) + hp

S

D, 5ps(l+6)v‘§+pss(1+5)+hpsusvs 725 |

"'/Z

d6
53]

g

s s dJ

dE
- cO, 3

(a12)

(A13)

(A1)

- cE

(A15)

d-
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(£ _* . 60 9,62 (=, re - ¢p 1 Sp+&2 2 ¢ p
' T s T s T s, T 1" 9% 59 "%
3 do T Jp Ov
'[ -
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[g— o+ 3 -];\asoo[ s s [g- 2+ ] 78-=3
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¢p go
2 ;- 6B 5,8, [6‘—p Sy 4 £ 8y +sAsd]5‘vp [2 ¢ &85 ¢p
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d_p dp dp np np M_p A O
S
[36"_'9 sr_]_ + .éﬁg Sg][ﬁ - s'f_l].!.[s_ - gﬁ]sgsg = %P—_
Jo wp T Cap AP TP A
[ €E 4 2R(air)] (e1)ER +2 9+T)+ ﬁ Sa (gr1) + £ 2T o
gp Qp Q_p gp g @p
0 0 S 0
= a’n o+ 25 %0+ 2R F0%01 LR (gut)n + (1)
dp up Ap
[sop Sn¢ - 28 S8 §——EJ17+—D£S_+——DESJ_}SC_13]%B+SJ_&ST_‘ gv“:ﬁ+
d np dp dp AD b =
i i i [Sn sdg - it\.s; + Sdg ] -—3 (9+T) +E2 g—t-[- s
g~ -7 3= - K P = e T ap

S .
0 np I qp ) qp
-(Q+T) [-——SDP *n°dz +
np
op s op s 8y op s op ¢o atpsssd P
s &ty 499 -5 A g Il tgp 40 N+ (5
op Ap de dp e do
SASn 2P SASd op s n Sy d d d cp ¢p Sl _CB
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o 4p =
AP
¢P [ op- (6P é‘p oS p .S P
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_ (1+8) (1+ _ cos(oty QS_
d-&z_ sin?(oky) do sin (otd) 49
Similarly:
55135 a(p_u_) --  av - dpt
d 8'S dpu s.dg -~ d v, - da P
'd—'-.‘)[ By [( Er; (6' )S dc]@+ P U -5:9[ =] v gs[-‘——]

S

where .g_[ﬁ] - [é;_/:] [i aF ;1 de 1 dpS]+ L(1+d)p At
) -1g -"s'F d c d+d - - 4+ -
T e
dp =

LI- b g S 3 d
p - [(l+6 P C.1‘\9+(l—1-5)c T3t D¢ 'd_-D]

s 2= dp - ' au dp

+D$ l+6) [)-Ll"p .@.._6.. 4T ——E -dﬁ - E) a E - 5 C ""-S-’ "'G. C "—S]

5 oF s as? d J s s a9 s 22 8 D

(40P d—i 5.5.01[0,38 4(15) L8y, (xd)e ey

§ -
5 CF s s av d-;) ¥
S S
cdd Vs - ab ., dc
+pF[2(l+6)d"9 C.l_‘,]-CF[LLc+uS——1,]——‘9
S '
\Y4 - a5 @3F - dc dog . 425
- — ( 8I'p ~c(Lp + b =— + pu, —
T a9 Pg d"ds ) 9 58 442
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- s dd - s dd
Py Tu asT Y T as /!

_The indicated derivatives of the shock variables are presented in

Appendix B,
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APPENDIX B

Method of Obtaining Post Shock Conditions
As Functions of the Shock Angle
The conditions which must be satisfied across the shock wave have

been given in Chapter III and are repeaded here for convenience,

P U, 8in 0 =p_ g  cos ¥ (BL)
U, cos 0=g, sin ¥ (B2)
= - s> .2 o= - =2 2
w T Py U; 51n.a-_— Fp§ + p d; cos” ¥ (B3)
-W U°° ) S qi ’
/2 —4z =M =+ 5 (Bk)
poo pS
Let
e = 5,/p,
Then
U, sin 0 = q  cos ¥ (B5)
U, cos 0=q_ sin ¥ (B6)
= = B2 .2 _ po - = 2
Ip, + o0 sin®c = Ip_ + poo/e ¢ cos® ¥ (B7)
) 0 s - =
7/2F~5—+—2—2—"+)—FI‘€ ps/ps (B8)
»

The normal deflection angle Vy can be eliminated from B7 by squaring

Equation B5 and combining:

: - => .2 ~ => . 2
Tp, + P, Ui sin® o= Tp, +p, ¢ Ui sin® o (B9)
or _
mei sin®g (
. SR B10
D, = P, + —F (1-¢) )

From B5 and B6:



02 cos® o+ & T8 sin® o = % (B11)

Substituting this expression for az into B8 and solving for ﬁs, one

obtains:

= w2 .2 e =
P mei sirf g mei sin® o

oo

Ps = 7Bz T TBre - € 87T ‘ (B12)

If B1O and Bl2 are set equal, a quadratic in the density ratio is

generated: _ _
e2-§-€-[ . + 1) ¥ +E=0 (B13)
1 "= = - £ 2 T
p U sin® o mei51n o]
and _ .
‘e 6 P > T% -
¢ = [— £1]- [ (o 17 - Do - L7 (awy
pmpi sin® ¢ PV sinfg - meisinza

The density ratio is known and the shock pressure can be obtained from
Equation B10, The temperature is obtained from ﬁhe equation of state and
the velocity components parallel and perpendicular to the Local shock
surface are obtained from Equations B5 and B6;

The normal and tangentiél components of velécity at the shock muét
be resolved into components along and normal to the local body surface,
Figure 3 demonstrates the geometry of this problem.
| The velocity immediately behind the shock can be obtained from B5
and B6 as:

is = Uw [ sinfo + cosac]% (B15)

From the geometry of Figure 3 it may be shown that

i
]

Els sin ¢ cos (o ++2 -90) + E‘Ls cos ¥ sin (o + 29 -90) (B16)

<1
[

< is cos y cos (o +d9 -90) - is sin ¥ sin (o +J -90) (BL7)

Equations B5 and B6 are again used to eliminate y to obtain the final

forms:
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G =Tcos osin (64d) - ¢ T sin ocos (o +4) (B18)
S 2] [ve]
v, = €0 sin o sin (o +4) + T, cos gcos (0 +) (B19)

The angular derivatives of the shock variables are reqguired in
some of the equations of motion, WNotice that the shock variables are
functions of the local shock angle ¢ and derivatives with respect to

are written:

d«) = 3s da ' ' (BQO)
and a&%p a2p dp 2
S s s d

= ( )2 To —';. (B21)
igF  adf as

where 138 has been used as an example, The appropriate derivatives are:

u

o]

s _ = doy 7 4o _. . 7 de . _. do
T = vs(l+ da) 0,7, sin o sin(o + J)-0_ i o cos(o+ J)~-¢ o9
T_cos ocos (o+4) (B22)
de do
—:9- = -u (1 + ")+ » qosin o sin (ot o) + T_ e d‘,cos o sin (o+ad)
-0 %% sin o cos (o + &) (B23)
s Pmac
a9 T T s
de _ I’faz cos o (% e-1) a0
S . N Ta (B2k)
Bw—wsin30[7( = +1)-¢]
o) sin“¢
dp
S _ (= - 1 de B
73 = (B -2 gyl eoto - 125 (225)
o -
dug  dvg a 9 _pd 1’) +@ 40 (B26)
392 Ty 3 T
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- = . . = = de . ‘
a=-v +U_sin osin (o +9) + €0 cos acos (o+d)+ T 3o sin ocos (ot+-2)
- . d2c - w
b=y o+ U — sinocos (o +J) + U_sin ¢ cos(o +4J)-el cos o sin(o +-))
do

- de . . ] de = ’
- U, 7o sin o sin (o +9) + 237U, cos g cos (0 +9)

av : ~
S = . - . = de _. .
P = i3t eU_ cos o sin (o +4))-0 sin o cos (o+ 9)+0 T sin ¢ sin (o+9)
=y du 2 C
s S d=g 0\2 do :
= - + +f (392 + g =3 2
o Tw Tttt tegs ,. ) (227)
e = -i-is + ﬁw[g—i sin o sin (o+sJ )+e cos o sin (o+4))- sin o cos (o +39)]
x

H
i
1

<

2
ot I—Jw[g—--E sinosin( o+ )+ %—% sin ¢ cos(ot o )+e cos g cos (o 9)
1 .

d R
+ sin o sin (0 +9) +2 == cos o sin (o + 9)]

do
du
g=- d; U [ sinccos (c+8) + € cos o cos (cr+29)+ Sincrsin(c+_3)]
2- 0 0 -
X = eydgpe | = de &0
a € a d e- o d-b‘?‘
8/ P
7 COSC+ =
e 8 S — . de [ 5 Psinc do (226,
a2 [ 4o (8/7e-1) © do 5
b/7 (— + 1)- ¢
PV sin“g¢
I 8
_ [142 cos®d] Po [7 € - 1]
sin” o p 0 sino [-li (I‘Dw +1)- €]
7 500_00 sin“o
dcp
BT (r29)
df dag
- - 1 de
=(PS"P°°) [E—T:'é '56] i
- (ﬁs B 5oo> [2(cot®c - 1) - %‘:’é‘ (d; + 4 cot U%E)]

ad
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APPENDIX C
Continuity and Momentum Equations in Final Form
The final forms of the continuity and :}-momentum equations are
presented here, None of the intermediate algebra is given as it only
lengthens the appendix. All notation is as introduced previously and all
new notation is defined as it is introduced. |
The final form of the continuity equation provides a solution for ﬁ.b

and therefore, the .continuity equation is effectively solved for it's

derivative, Then:

- w, 4, 2
RS sin~9 [1 - ——a—ﬁg] i Bpy, 1, oS —6p u ( ) cos.d -3(1+8)
I ——
L
= _ du _ dp.
58;}8 sind - 3 (LZ@B) sin .9 [QS a—; + a——g’-]+6psussin19 - sin 26‘,
| MU 5 3%
oyl - (148)p_u_l4 ==(1+3)sin & [—-—]s+ 5 [; == [6(1+6)cos$ +
N
§ sin.? 3—5_3 + 2(1+8) sin V] (c1)

The y-momentum equation mey be solved for the second derivative of g,
This is a very complicated equation and no detail of its derivation is

given here,

6

g 1 doye dg
=2 == [R, - R, (z5)% + R, = (R—R +R6)+Q
a2 R 17 o\ B 33 62(l+t‘>) L Ry
- - ‘ c2
WRg + 2R, Ryo] (c2)
where _
. us ~ de
R = aﬂp uS - PQE -We pSuS + Zaps + Z -g— po° e

Q- ____[urpsM -4.85 ]
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R'l - % cot:9 1!—21-55 5553‘73 = (125) (551};)51
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S S
= - /o= - - = dv
183 38 - - - 5(1+8) ,dpuv s= == 45 , & (M33) = = s
By=3 G Pe%s T T2 ( 5 s 372 logug ds
du dp
+ PV e 4+ 0TV —s]
PsVs T3 s's d~2
_ 5 a8 . opuv 5 38 ~ =2 . = =»  5(1+8) ;opf

dy °

Rg = (1+§)2[P§S+Bs§§]—.,(l+5)g3$ﬁs\'rs %% - Tpy - %E—)[(Mé)ﬁb-2(1+8)f>s+5(l+§)

- =2
pbub]
T
__ v, aw, 0 _oan, _ dp,__ dpg
R’{:Epsus——.; Y] (psvs+ps—:§' T U TE) T U T
__ du, _odu,  _ dp, AV
Rg=29susa‘_+[ps~3+us<—i-3][us--d_§]
av @&, au 3 b p.T
s s
R. = — 402 "8 = s, Ps7s
9 BDsd,‘, ER) (a—s-+v)+cot~9(p d«9+usd-a) .2‘9]
sin
s
-5 D& pBe) . ya 40 @ d(CE) ., &F de
Ro=ar [Pgs-Dggs +Vegy - Bt -B5 - 7 P 5
av au -== -
dpu dpu s 1 s 1dF 1de,  Opuvy, - (Opu
(’a's_—r‘)s] [F]SW [—gs-ﬁg@-ggg][(m)gvs(_)s]

us oF oy
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dp
. 2= dp g _ . dpg oo dc_
usm"{hr‘ [(1+3) (f)s RN ___ds9 —-56 ( )2 1-(148) [usc.m + UPs T
cF d%z - i
= Lru = e _ dps _ e
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